CVE-2025-22023
Vulnerability Scoring
Status: Awaiting Analysis
Published on: 16 Apr 2025, 11:15 UTC
CVSS Release:
CVE-2025-22023: In the Linux kernel, the following vulnerability has been resolved: usb: xhci: Don't skip on Stopped - Length Invalid Up until commit d56b0b2ab142 ("usb: xhci: ensure skipped isoc TDs are returned when isoc ring is stopped") in v6.11, the driver didn't skip missed isochronous TDs when handling Stoppend and Stopped - Length Invalid events. Instead, it erroneously cleared the skip flag, which would cause the ring to get stuck, as future events won't match the missed TD which is never removed from the queue until it's cancelled. This buggy logic seems to have been in place substantially unchanged since the 3.x series over 10 years ago, which probably speaks first and foremost about relative rarity of this case in normal usage, but by the spec I see no reason why it shouldn't be possible. After d56b0b2ab142, TDs are immediately skipped when handling those Stopped events. This poses a potential problem in case of Stopped - Length Invalid, which occurs either on completed TDs (likely already given back) or Link and No-Op TRBs. Such event won't be recognized as matching any TD (unless it's the rare Link TRB inside a TD) and will result in skipping all pending TDs, giving them back possibly before they are done, risking isoc data loss and maybe UAF by HW. As a compromise, don't skip and don't clear the skip flag on this kind of event. Then the next event will skip missed TDs. A downside of not handling Stopped - Length Invalid on a Link inside a TD is that if the TD is cancelled, its actual length will not be updated to account for TRBs (silently) completed before the TD was stopped. I had no luck producing this sequence of completion events so there is no compelling demonstration of any resulting disaster. It may be a very rare, obscure condition. The sole motivation for this patch is that if such unlikely event does occur, I'd rather risk reporting a cancelled partially done isoc frame as empty than gamble with UAF. This will be fixed more properly by looking at Stopped event's TRB pointer when making skipping decisions, but such rework is unlikely to be backported to v6.12, which will stay around for a few years.
The exploitability of CVE-2025-22023 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).
No exploitability data is available for CVE-2025-22023.
A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.
Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.
Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.
Above is the CVSS Sub-score Breakdown for CVE-2025-22023, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.
Below is the Impact Analysis for CVE-2025-22023, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.
Unknown
Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.