CVE-2025-15469
Vulnerability Scoring
Security assessments indicate that CVE-2025-15469 presents a notable risk, potentially requiring prompt mitigation.
Security assessments indicate that CVE-2025-15469 presents a notable risk, potentially requiring prompt mitigation.
Status: Awaiting Analysis
Last updated: 🕟 29 Jan 2026, 16:31 UTC
Originally published on: 🕓 27 Jan 2026, 16:16 UTC
Time between publication and last update: 2 days
CVSS Release: version 3
134c704f-9b21-4f2e-91b3-4a467353bcc0
Secondary
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:H/A:N
CVE-2025-15469: Issue summary: The 'openssl dgst' command-line tool silently truncates input data to 16MB when using one-shot signing algorithms and reports success instead of an error. Impact summary: A user signing or verifying files larger than 16MB with one-shot algorithms (such as Ed25519, Ed448, or ML-DSA) may believe the entire file is authenticated while trailing data beyond 16MB remains unauthenticated. When the 'openssl dgst' command is used with algorithms that only support one-shot signing (Ed25519, Ed448, ML-DSA-44, ML-DSA-65, ML-DSA-87), the input is buffered with a 16MB limit. If the input exceeds this limit, the tool silently truncates to the first 16MB and continues without signaling an error, contrary to what the documentation states. This creates an integrity gap where trailing bytes can be modified without detection if both signing and verification are performed using the same affected codepath. The issue affects only the command-line tool behavior. Verifiers that process the full message using library APIs will reject the signature, so the risk primarily affects workflows that both sign and verify with the affected 'openssl dgst' command. Streaming digest algorithms for 'openssl dgst' and library users are unaffected. The FIPS modules in 3.5 and 3.6 are not affected by this issue, as the command-line tools are outside the OpenSSL FIPS module boundary. OpenSSL 3.5 and 3.6 are vulnerable to this issue. OpenSSL 3.4, 3.3, 3.0, 1.1.1 and 1.0.2 are not affected by this issue.
The exploitability of CVE-2025-15469 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).
CVE-2025-15469 presents an accessible attack vector with minimal effort required. Restricting access controls and implementing security updates are critical to reducing exploitation risks.
A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.
Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.
Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.
Above is the CVSS Sub-score Breakdown for CVE-2025-15469, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.
Below is the Impact Analysis for CVE-2025-15469, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.
Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.