CVE-2024-56547
Vulnerability Scoring
Status: Received on 27 Dec 2024, 14:15 UTC
Published on: 27 Dec 2024, 14:15 UTC
CVSS Release:
CVE-2024-56547: In the Linux kernel, the following vulnerability has been resolved: rcu/nocb: Fix missed RCU barrier on deoffloading Currently, running rcutorture test with torture_type=rcu fwd_progress=8 n_barrier_cbs=8 nocbs_nthreads=8 nocbs_toggle=100 onoff_interval=60 test_boost=2, will trigger the following warning: WARNING: CPU: 19 PID: 100 at kernel/rcu/tree_nocb.h:1061 rcu_nocb_rdp_deoffload+0x292/0x2a0 RIP: 0010:rcu_nocb_rdp_deoffload+0x292/0x2a0 Call Trace: <TASK> ? __warn+0x7e/0x120 ? rcu_nocb_rdp_deoffload+0x292/0x2a0 ? report_bug+0x18e/0x1a0 ? handle_bug+0x3d/0x70 ? exc_invalid_op+0x18/0x70 ? asm_exc_invalid_op+0x1a/0x20 ? rcu_nocb_rdp_deoffload+0x292/0x2a0 rcu_nocb_cpu_deoffload+0x70/0xa0 rcu_nocb_toggle+0x136/0x1c0 ? __pfx_rcu_nocb_toggle+0x10/0x10 kthread+0xd1/0x100 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x2f/0x50 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 </TASK> CPU0 CPU2 CPU3 //rcu_nocb_toggle //nocb_cb_wait //rcutorture // deoffload CPU1 // process CPU1's rdp rcu_barrier() rcu_segcblist_entrain() rcu_segcblist_add_len(1); // len == 2 // enqueue barrier // callback to CPU1's // rdp->cblist rcu_do_batch() // invoke CPU1's rdp->cblist // callback rcu_barrier_callback() rcu_barrier() mutex_lock(&rcu_state.barrier_mutex); // still see len == 2 // enqueue barrier callback // to CPU1's rdp->cblist rcu_segcblist_entrain() rcu_segcblist_add_len(1); // len == 3 // decrement len rcu_segcblist_add_len(-2); kthread_parkme() // CPU1's rdp->cblist len == 1 // Warn because there is // still a pending barrier // trigger warning WARN_ON_ONCE(rcu_segcblist_n_cbs(&rdp->cblist)); cpus_read_unlock(); // wait CPU1 to comes online and // invoke barrier callback on // CPU1 rdp's->cblist wait_for_completion(&rcu_state.barrier_completion); // deoffload CPU4 cpus_read_lock() rcu_barrier() mutex_lock(&rcu_state.barrier_mutex); // block on barrier_mutex // wait rcu_barrier() on // CPU3 to unlock barrier_mutex // but CPU3 unlock barrier_mutex // need to wait CPU1 comes online // when CPU1 going online will block on cpus_write_lock The above scenario will not only trigger a WARN_ON_ONCE(), but also trigger a deadlock. Thanks to nocb locking, a second racing rcu_barrier() on an offline CPU will either observe the decremented callback counter down to 0 and spare the callback enqueue, or rcuo will observe the new callback and keep rdp->nocb_cb_sleep to false. Therefore check rdp->nocb_cb_sleep before parking to make sure no further rcu_barrier() is waiting on the rdp.
The exploitability of CVE-2024-56547 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).
No exploitability data is available for CVE-2024-56547.
A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.
Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.
Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.
Above is the CVSS Sub-score Breakdown for CVE-2024-56547, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.
Below is the Impact Analysis for CVE-2024-56547, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.
The EPSS score estimates the probability that this vulnerability will be exploited in the near future.
EPSS Score: 0.043% (probability of exploit)
EPSS Percentile: 12.0%
(lower percentile = lower relative risk)
This vulnerability is less risky than approximately 88.0% of others.
Unknown
Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.