CVE-2024-53207
Vulnerability Scoring
Security assessments indicate that CVE-2024-53207 presents a notable risk, potentially requiring prompt mitigation.
Security assessments indicate that CVE-2024-53207 presents a notable risk, potentially requiring prompt mitigation.
Status: Analyzed
Last updated: 🕘 08 Jan 2025, 21:26 UTC
Originally published on: 🕑 27 Dec 2024, 14:15 UTC
Time between publication and last update: 12 days
CVSS Release: version 3
nvd@nist.gov
Primary
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H
CVE-2024-53207: In the Linux kernel, the following vulnerability has been resolved: Bluetooth: MGMT: Fix possible deadlocks This fixes possible deadlocks like the following caused by hci_cmd_sync_dequeue causing the destroy function to run: INFO: task kworker/u19:0:143 blocked for more than 120 seconds. Tainted: G W O 6.8.0-2024-03-19-intel-next-iLS-24ww14 #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:kworker/u19:0 state:D stack:0 pid:143 tgid:143 ppid:2 flags:0x00004000 Workqueue: hci0 hci_cmd_sync_work [bluetooth] Call Trace: <TASK> __schedule+0x374/0xaf0 schedule+0x3c/0xf0 schedule_preempt_disabled+0x1c/0x30 __mutex_lock.constprop.0+0x3ef/0x7a0 __mutex_lock_slowpath+0x13/0x20 mutex_lock+0x3c/0x50 mgmt_set_connectable_complete+0xa4/0x150 [bluetooth] ? kfree+0x211/0x2a0 hci_cmd_sync_dequeue+0xae/0x130 [bluetooth] ? __pfx_cmd_complete_rsp+0x10/0x10 [bluetooth] cmd_complete_rsp+0x26/0x80 [bluetooth] mgmt_pending_foreach+0x4d/0x70 [bluetooth] __mgmt_power_off+0x8d/0x180 [bluetooth] ? _raw_spin_unlock_irq+0x23/0x40 hci_dev_close_sync+0x445/0x5b0 [bluetooth] hci_set_powered_sync+0x149/0x250 [bluetooth] set_powered_sync+0x24/0x60 [bluetooth] hci_cmd_sync_work+0x90/0x150 [bluetooth] process_one_work+0x13e/0x300 worker_thread+0x2f7/0x420 ? __pfx_worker_thread+0x10/0x10 kthread+0x107/0x140 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x3d/0x60 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1b/0x30 </TASK>
The exploitability of CVE-2024-53207 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).
CVE-2024-53207 presents an accessible attack vector with minimal effort required. Restricting access controls and implementing security updates are critical to reducing exploitation risks.
A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.
Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.
Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.
Above is the CVSS Sub-score Breakdown for CVE-2024-53207, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.
Below is the Impact Analysis for CVE-2024-53207, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.
The EPSS score estimates the probability that this vulnerability will be exploited in the near future.
EPSS Score: 0.042% (probability of exploit)
EPSS Percentile: 5.02%
(lower percentile = lower relative risk)
This vulnerability is less risky than approximately 94.98% of others.
Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.