CVE-2024-48930 Vulnerability Analysis & Exploit Details

CVE-2024-48930
Vulnerability Scoring

Analysis In Progress
Analysis In Progress

Attack Complexity Details

  • Attack Complexity:
    Attack Complexity Analysis In Progress
  • Attack Vector:
    Attack Vector Under Analysis
  • Privileges Required: None
    No authentication is required for exploitation.
  • Scope:
    Impact is confined to the initially vulnerable component.
  • User Interaction: None
    No user interaction is necessary for exploitation.

CVE-2024-48930 Details

Status: Awaiting Analysis

Published on: 21 Oct 2024, 16:15 UTC

CVSS Release:

CVE-2024-48930 Vulnerability Summary

CVE-2024-48930: secp256k1-node is a Node.js binding for an Optimized C library for EC operations on curve secp256k1. In `elliptic`-based version, `loadUncompressedPublicKey` has a check that the public key is on the curve. Prior to versions 5.0.1, 4.0.4, and 3.8.1, however, `loadCompressedPublicKey` is missing that check. That allows the attacker to use public keys on low-cardinality curves to extract enough information to fully restore the private key from as little as 11 ECDH sessions, and very cheaply on compute power. Other operations on public keys are also affected, including e.g. `publicKeyVerify()` incorrectly returning `true` on those invalid keys, and e.g. `publicKeyTweakMul()` also returning predictable outcomes allowing to restore the tweak. Versions 5.0.1, 4.0.4, and 3.8.1 contain a fix for the issue.

Assessing the Risk of CVE-2024-48930

Access Complexity Graph

The exploitability of CVE-2024-48930 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).

Exploitability Analysis for CVE-2024-48930

No exploitability data is available for CVE-2024-48930.

Understanding AC and PR

A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.

Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.

Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.

CVSS Score Breakdown Chart

Above is the CVSS Sub-score Breakdown for CVE-2024-48930, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.

CIA Impact Analysis

Below is the Impact Analysis for CVE-2024-48930, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.

  • Confidentiality: None
    CVE-2024-48930 does not compromise confidentiality.
  • Integrity: None
    CVE-2024-48930 does not impact data integrity.
  • Availability: None
    CVE-2024-48930 does not affect system availability.

Exploit Prediction Scoring System (EPSS)

The EPSS score estimates the probability that this vulnerability will be exploited in the near future.

EPSS Score: 0.044% (probability of exploit)

EPSS Percentile: 12.92% (lower percentile = lower relative risk)
This vulnerability is less risky than approximately 87.08% of others.

CVE-2024-48930 References

External References

CWE Common Weakness Enumeration

CWE-354

CAPEC Common Attack Pattern Enumeration and Classification

  • Checksum Spoofing CAPEC-145 An adversary spoofs a checksum message for the purpose of making a payload appear to have a valid corresponding checksum. Checksums are used to verify message integrity. They consist of some value based on the value of the message they are protecting. Hash codes are a common checksum mechanism. Both the sender and recipient are able to compute the checksum based on the contents of the message. If the message contents change between the sender and recipient, the sender and recipient will compute different checksum values. Since the sender's checksum value is transmitted with the message, the recipient would know that a modification occurred. In checksum spoofing an adversary modifies the message body and then modifies the corresponding checksum so that the recipient's checksum calculation will match the checksum (created by the adversary) in the message. This would prevent the recipient from realizing that a change occurred.
  • Padding Oracle Crypto Attack CAPEC-463 An adversary is able to efficiently decrypt data without knowing the decryption key if a target system leaks data on whether or not a padding error happened while decrypting the ciphertext. A target system that leaks this type of information becomes the padding oracle and an adversary is able to make use of that oracle to efficiently decrypt data without knowing the decryption key by issuing on average 128*b calls to the padding oracle (where b is the number of bytes in the ciphertext block). In addition to performing decryption, an adversary is also able to produce valid ciphertexts (i.e., perform encryption) by using the padding oracle, all without knowing the encryption key.
  • Manipulating Writeable Configuration Files CAPEC-75 Generally these are manually edited files that are not in the preview of the system administrators, any ability on the attackers' behalf to modify these files, for example in a CVS repository, gives unauthorized access directly to the application, the same as authorized users.

Protect Your Infrastructure against CVE-2024-48930: Combat Critical CVE Threats

Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.

Other 5 Recently Published CVEs Vulnerabilities

  • CVE-2025-31203 – An integer overflow was addressed with improved input validation. This issue is fixed in macOS Sequoia 15.4, tvOS 18.4, iPadOS 17.7.6, macOS Sonoma...
  • CVE-2025-31202 – A null pointer dereference was addressed with improved input validation. This issue is fixed in iOS 18.4 and iPadOS 18.4, macOS Sequoia 15.4, tvOS ...
  • CVE-2025-31197 – The issue was addressed with improved checks. This issue is fixed in macOS Sequoia 15.4, tvOS 18.4, macOS Ventura 13.7.5, iPadOS 17.7.6, macOS Sono...
  • CVE-2025-30445 – A type confusion issue was addressed with improved checks. This issue is fixed in macOS Sequoia 15.4, tvOS 18.4, macOS Ventura 13.7.5, iPadOS 17.7....
  • CVE-2025-24271 – An access issue was addressed with improved access restrictions. This issue is fixed in macOS Sequoia 15.4, tvOS 18.4, macOS Ventura 13.7.5, iPadOS...