CVE-2024-45310
Vulnerability Scoring
Exploiting CVE-2024-45310 requires specific conditions, leading to a moderate security impact.
Exploiting CVE-2024-45310 requires specific conditions, leading to a moderate security impact.
Status: Awaiting Analysis
Last updated: 🕕 21 Feb 2025, 18:15 UTC
Originally published on: 🕖 03 Sep 2024, 19:15 UTC
Time between publication and last update: 170 days
CVSS Release: version 3
security-advisories@github.com
Secondary
CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:C/C:N/I:L/A:N
CVE-2024-45310: runc is a CLI tool for spawning and running containers according to the OCI specification. runc 1.1.13 and earlier, as well as 1.2.0-rc2 and earlier, can be tricked into creating empty files or directories in arbitrary locations in the host filesystem by sharing a volume between two containers and exploiting a race with `os.MkdirAll`. While this could be used to create empty files, existing files would not be truncated. An attacker must have the ability to start containers using some kind of custom volume configuration. Containers using user namespaces are still affected, but the scope of places an attacker can create inodes can be significantly reduced. Sufficiently strict LSM policies (SELinux/Apparmor) can also in principle block this attack -- we suspect the industry standard SELinux policy may restrict this attack's scope but the exact scope of protection hasn't been analysed. This is exploitable using runc directly as well as through Docker and Kubernetes. The issue is fixed in runc v1.1.14 and v1.2.0-rc3. Some workarounds are available. Using user namespaces restricts this attack fairly significantly such that the attacker can only create inodes in directories that the remapped root user/group has write access to. Unless the root user is remapped to an actual user on the host (such as with rootless containers that don't use `/etc/sub[ug]id`), this in practice means that an attacker would only be able to create inodes in world-writable directories. A strict enough SELinux or AppArmor policy could in principle also restrict the scope if a specific label is applied to the runc runtime, though neither the extent to which the standard existing policies block this attack nor what exact policies are needed to sufficiently restrict this attack have been thoroughly tested.
The exploitability of CVE-2024-45310 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).
With low attack complexity and no required privileges, CVE-2024-45310 is an easy target for cybercriminals. Organizations should prioritize immediate mitigation measures to prevent unauthorized access and data breaches.
A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.
Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.
Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.
Above is the CVSS Sub-score Breakdown for CVE-2024-45310, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.
Below is the Impact Analysis for CVE-2024-45310, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.
The EPSS score estimates the probability that this vulnerability will be exploited in the near future.
EPSS Score: 0.045% (probability of exploit)
EPSS Percentile: 18.4%
(lower percentile = lower relative risk)
This vulnerability is less risky than approximately 81.6% of others.
Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.