CVE-2024-44952
Vulnerability Scoring
Security assessments indicate that CVE-2024-44952 presents a notable risk, potentially requiring prompt mitigation.
Security assessments indicate that CVE-2024-44952 presents a notable risk, potentially requiring prompt mitigation.
Status: Modified
Last updated: 🕓 08 Nov 2024, 16:15 UTC
Originally published on: 🕖 04 Sep 2024, 19:15 UTC
Time between publication and last update: 64 days
CVSS Release: version 3
nvd@nist.gov
Primary
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H
CVE-2024-44952: In the Linux kernel, the following vulnerability has been resolved: driver core: Fix uevent_show() vs driver detach race uevent_show() wants to de-reference dev->driver->name. There is no clean way for a device attribute to de-reference dev->driver unless that attribute is defined via (struct device_driver).dev_groups. Instead, the anti-pattern of taking the device_lock() in the attribute handler risks deadlocks with code paths that remove device attributes while holding the lock. This deadlock is typically invisible to lockdep given the device_lock() is marked lockdep_set_novalidate_class(), but some subsystems allocate a local lockdep key for @dev->mutex to reveal reports of the form: ====================================================== WARNING: possible circular locking dependency detected 6.10.0-rc7+ #275 Tainted: G OE N ------------------------------------------------------ modprobe/2374 is trying to acquire lock: ffff8c2270070de0 (kn->active#6){++++}-{0:0}, at: __kernfs_remove+0xde/0x220 but task is already holding lock: ffff8c22016e88f8 (&cxl_root_key){+.+.}-{3:3}, at: device_release_driver_internal+0x39/0x210 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (&cxl_root_key){+.+.}-{3:3}: __mutex_lock+0x99/0xc30 uevent_show+0xac/0x130 dev_attr_show+0x18/0x40 sysfs_kf_seq_show+0xac/0xf0 seq_read_iter+0x110/0x450 vfs_read+0x25b/0x340 ksys_read+0x67/0xf0 do_syscall_64+0x75/0x190 entry_SYSCALL_64_after_hwframe+0x76/0x7e -> #0 (kn->active#6){++++}-{0:0}: __lock_acquire+0x121a/0x1fa0 lock_acquire+0xd6/0x2e0 kernfs_drain+0x1e9/0x200 __kernfs_remove+0xde/0x220 kernfs_remove_by_name_ns+0x5e/0xa0 device_del+0x168/0x410 device_unregister+0x13/0x60 devres_release_all+0xb8/0x110 device_unbind_cleanup+0xe/0x70 device_release_driver_internal+0x1c7/0x210 driver_detach+0x47/0x90 bus_remove_driver+0x6c/0xf0 cxl_acpi_exit+0xc/0x11 [cxl_acpi] __do_sys_delete_module.isra.0+0x181/0x260 do_syscall_64+0x75/0x190 entry_SYSCALL_64_after_hwframe+0x76/0x7e The observation though is that driver objects are typically much longer lived than device objects. It is reasonable to perform lockless de-reference of a @driver pointer even if it is racing detach from a device. Given the infrequency of driver unregistration, use synchronize_rcu() in module_remove_driver() to close any potential races. It is potentially overkill to suffer synchronize_rcu() just to handle the rare module removal racing uevent_show() event. Thanks to Tetsuo Handa for the debug analysis of the syzbot report [1].
The exploitability of CVE-2024-44952 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).
CVE-2024-44952 presents an accessible attack vector with minimal effort required. Restricting access controls and implementing security updates are critical to reducing exploitation risks.
A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.
Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.
Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.
Above is the CVSS Sub-score Breakdown for CVE-2024-44952, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.
Below is the Impact Analysis for CVE-2024-44952, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.
The EPSS score estimates the probability that this vulnerability will be exploited in the near future.
EPSS Score: 0.043% (probability of exploit)
EPSS Percentile: 11.87%
(lower percentile = lower relative risk)
This vulnerability is less risky than approximately 88.13% of others.
Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.