CVE-2024-39362 Vulnerability Analysis & Exploit Details

CVE-2024-39362
Vulnerability Scoring

Analysis In Progress
Analysis In Progress

Attack Complexity Details

  • Attack Complexity:
    Attack Complexity Analysis In Progress
  • Attack Vector:
    Attack Vector Under Analysis
  • Privileges Required: None
    No authentication is required for exploitation.
  • Scope:
    Impact is confined to the initially vulnerable component.
  • User Interaction: None
    No user interaction is necessary for exploitation.

CVE-2024-39362 Details

Status: Awaiting Analysis

Published on: 25 Jun 2024, 15:15 UTC

CVSS Release:

CVE-2024-39362 Vulnerability Summary

CVE-2024-39362: In the Linux kernel, the following vulnerability has been resolved: i2c: acpi: Unbind mux adapters before delete There is an issue with ACPI overlay table removal specifically related to I2C multiplexers. Consider an ACPI SSDT Overlay that defines a PCA9548 I2C mux on an existing I2C bus. When this table is loaded we see the creation of a device for the overall PCA9548 chip and 8 further devices - one i2c_adapter each for the mux channels. These are all bound to their ACPI equivalents via an eventual invocation of acpi_bind_one(). When we unload the SSDT overlay we run into the problem. The ACPI devices are deleted as normal via acpi_device_del_work_fn() and the acpi_device_del_list. However, the following warning and stack trace is output as the deletion does not go smoothly: ------------[ cut here ]------------ kernfs: can not remove 'physical_node', no directory WARNING: CPU: 1 PID: 11 at fs/kernfs/dir.c:1674 kernfs_remove_by_name_ns+0xb9/0xc0 Modules linked in: CPU: 1 PID: 11 Comm: kworker/u128:0 Not tainted 6.8.0-rc6+ #1 Hardware name: congatec AG conga-B7E3/conga-B7E3, BIOS 5.13 05/16/2023 Workqueue: kacpi_hotplug acpi_device_del_work_fn RIP: 0010:kernfs_remove_by_name_ns+0xb9/0xc0 Code: e4 00 48 89 ef e8 07 71 db ff 5b b8 fe ff ff ff 5d 41 5c 41 5d e9 a7 55 e4 00 0f 0b eb a6 48 c7 c7 f0 38 0d 9d e8 97 0a d5 ff <0f> 0b eb dc 0f 1f 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 RSP: 0018:ffff9f864008fb28 EFLAGS: 00010286 RAX: 0000000000000000 RBX: ffff8ef90a8d4940 RCX: 0000000000000000 RDX: ffff8f000e267d10 RSI: ffff8f000e25c780 RDI: ffff8f000e25c780 RBP: ffff8ef9186f9870 R08: 0000000000013ffb R09: 00000000ffffbfff R10: 00000000ffffbfff R11: ffff8f000e0a0000 R12: ffff9f864008fb50 R13: ffff8ef90c93dd60 R14: ffff8ef9010d0958 R15: ffff8ef9186f98c8 FS: 0000000000000000(0000) GS:ffff8f000e240000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f48f5253a08 CR3: 00000003cb82e000 CR4: 00000000003506f0 Call Trace: <TASK> ? kernfs_remove_by_name_ns+0xb9/0xc0 ? __warn+0x7c/0x130 ? kernfs_remove_by_name_ns+0xb9/0xc0 ? report_bug+0x171/0x1a0 ? handle_bug+0x3c/0x70 ? exc_invalid_op+0x17/0x70 ? asm_exc_invalid_op+0x1a/0x20 ? kernfs_remove_by_name_ns+0xb9/0xc0 ? kernfs_remove_by_name_ns+0xb9/0xc0 acpi_unbind_one+0x108/0x180 device_del+0x18b/0x490 ? srso_return_thunk+0x5/0x5f ? srso_return_thunk+0x5/0x5f device_unregister+0xd/0x30 i2c_del_adapter.part.0+0x1bf/0x250 i2c_mux_del_adapters+0xa1/0xe0 i2c_device_remove+0x1e/0x80 device_release_driver_internal+0x19a/0x200 bus_remove_device+0xbf/0x100 device_del+0x157/0x490 ? __pfx_device_match_fwnode+0x10/0x10 ? srso_return_thunk+0x5/0x5f device_unregister+0xd/0x30 i2c_acpi_notify+0x10f/0x140 notifier_call_chain+0x58/0xd0 blocking_notifier_call_chain+0x3a/0x60 acpi_device_del_work_fn+0x85/0x1d0 process_one_work+0x134/0x2f0 worker_thread+0x2f0/0x410 ? __pfx_worker_thread+0x10/0x10 kthread+0xe3/0x110 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x2f/0x50 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1b/0x30 </TASK> ---[ end trace 0000000000000000 ]--- ... repeated 7 more times, 1 for each channel of the mux ... The issue is that the binding of the ACPI devices to their peer I2C adapters is not correctly cleaned up. Digging deeper into the issue we see that the deletion order is such that the ACPI devices matching the mux channel i2c adapters are deleted first during the SSDT overlay removal. For each of the channels we see a call to i2c_acpi_notify() with ACPI_RECONFIG_DEVICE_REMOVE but, because these devices are not actually i2c_clients, nothing is done for them. Later on, after each of the mux channels has been dealt with, we come to delete the i2c_client representing the PCA9548 device. This is the call stack we see above, whereby the kernel cleans up the i2c_client including destruction of the mux and its channel adapters. At this point we do attempt to unbind from the ACPI peers but those peers ---truncated---

Assessing the Risk of CVE-2024-39362

Access Complexity Graph

The exploitability of CVE-2024-39362 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).

Exploitability Analysis for CVE-2024-39362

No exploitability data is available for CVE-2024-39362.

Understanding AC and PR

A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.

Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.

Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.

CVSS Score Breakdown Chart

Above is the CVSS Sub-score Breakdown for CVE-2024-39362, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.

CIA Impact Analysis

Below is the Impact Analysis for CVE-2024-39362, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.

  • Confidentiality: None
    CVE-2024-39362 does not compromise confidentiality.
  • Integrity: None
    CVE-2024-39362 does not impact data integrity.
  • Availability: None
    CVE-2024-39362 does not affect system availability.

Exploit Prediction Scoring System (EPSS)

The EPSS score estimates the probability that this vulnerability will be exploited in the near future.

EPSS Score: 0.043% (probability of exploit)

EPSS Percentile: 12.0% (lower percentile = lower relative risk)
This vulnerability is less risky than approximately 88.0% of others.

CVE-2024-39362 References

External References

CWE Common Weakness Enumeration

Unknown

Protect Your Infrastructure against CVE-2024-39362: Combat Critical CVE Threats

Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.

Other 5 Recently Published CVEs Vulnerabilities

  • CVE-2025-31203 – An integer overflow was addressed with improved input validation. This issue is fixed in macOS Sequoia 15.4, tvOS 18.4, iPadOS 17.7.6, macOS Sonoma...
  • CVE-2025-31202 – A null pointer dereference was addressed with improved input validation. This issue is fixed in iOS 18.4 and iPadOS 18.4, macOS Sequoia 15.4, tvOS ...
  • CVE-2025-31197 – The issue was addressed with improved checks. This issue is fixed in macOS Sequoia 15.4, tvOS 18.4, macOS Ventura 13.7.5, iPadOS 17.7.6, macOS Sono...
  • CVE-2025-30445 – A type confusion issue was addressed with improved checks. This issue is fixed in macOS Sequoia 15.4, tvOS 18.4, macOS Ventura 13.7.5, iPadOS 17.7....
  • CVE-2025-24271 – An access issue was addressed with improved access restrictions. This issue is fixed in macOS Sequoia 15.4, tvOS 18.4, macOS Ventura 13.7.5, iPadOS...