CVE-2024-36962
Vulnerability Scoring
Security assessments indicate that CVE-2024-36962 presents a notable risk, potentially requiring prompt mitigation.
Security assessments indicate that CVE-2024-36962 presents a notable risk, potentially requiring prompt mitigation.
Status: Analyzed
Last updated: 🕝 01 Oct 2025, 14:36 UTC
Originally published on: 🕗 03 Jun 2024, 08:15 UTC
Time between publication and last update: 485 days
CVSS Release: version 3
nvd@nist.gov
Primary
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H
CVE-2024-36962: In the Linux kernel, the following vulnerability has been resolved: net: ks8851: Queue RX packets in IRQ handler instead of disabling BHs Currently the driver uses local_bh_disable()/local_bh_enable() in its IRQ handler to avoid triggering net_rx_action() softirq on exit from netif_rx(). The net_rx_action() could trigger this driver .start_xmit callback, which is protected by the same lock as the IRQ handler, so calling the .start_xmit from netif_rx() from the IRQ handler critical section protected by the lock could lead to an attempt to claim the already claimed lock, and a hang. The local_bh_disable()/local_bh_enable() approach works only in case the IRQ handler is protected by a spinlock, but does not work if the IRQ handler is protected by mutex, i.e. this works for KS8851 with Parallel bus interface, but not for KS8851 with SPI bus interface. Remove the BH manipulation and instead of calling netif_rx() inside the IRQ handler code protected by the lock, queue all the received SKBs in the IRQ handler into a queue first, and once the IRQ handler exits the critical section protected by the lock, dequeue all the queued SKBs and push them all into netif_rx(). At this point, it is safe to trigger the net_rx_action() softirq, since the netif_rx() call is outside of the lock that protects the IRQ handler.
The exploitability of CVE-2024-36962 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).
CVE-2024-36962 presents an accessible attack vector with minimal effort required. Restricting access controls and implementing security updates are critical to reducing exploitation risks.
A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.
Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.
Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.
Above is the CVSS Sub-score Breakdown for CVE-2024-36962, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.
Below is the Impact Analysis for CVE-2024-36962, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.
The EPSS score estimates the probability that this vulnerability will be exploited in the near future.
EPSS Score: 0.045% (probability of exploit)
EPSS Percentile: 18.4%
(lower percentile = lower relative risk)
This vulnerability is less risky than approximately 81.6% of others.
NVD-CWE-noinfo
Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.