CVE-2024-32017
Vulnerability Scoring
As a catastrophic security flaw, CVE-2024-32017 has severe implications, demanding immediate intervention.
As a catastrophic security flaw, CVE-2024-32017 has severe implications, demanding immediate intervention.
Status: Awaiting Analysis
Last updated: 🕘 21 Nov 2024, 09:14 UTC
Originally published on: 🕖 01 May 2024, 07:15 UTC
Time between publication and last update: 204 days
CVSS Release: version 3
security-advisories@github.com
Secondary
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H
CVE-2024-32017: RIOT is a real-time multi-threading operating system that supports a range of devices that are typically 8-bit, 16-bit and 32-bit microcontrollers. The size check in the `gcoap_dns_server_proxy_get()` function contains a small typo that may lead to a buffer overflow in the subsequent `strcpy()`. In detail, the length of the `_uri` string is checked instead of the length of the `_proxy` string. The `_gcoap_forward_proxy_copy_options()` function does not implement an explicit size check before copying data to the `cep->req_etag` buffer that is `COAP_ETAG_LENGTH_MAX` bytes long. If an attacker can craft input so that `optlen` becomes larger than `COAP_ETAG_LENGTH_MAX`, they can cause a buffer overflow. If the input above is attacker-controlled and crosses a security boundary, the impact of the buffer overflow vulnerabilities could range from denial of service to arbitrary code execution. This issue has yet to be patched. Users are advised to add manual bounds checking.
The exploitability of CVE-2024-32017 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).
With low attack complexity and no required privileges, CVE-2024-32017 is an easy target for cybercriminals. Organizations should prioritize immediate mitigation measures to prevent unauthorized access and data breaches.
A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.
Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.
Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.
Above is the CVSS Sub-score Breakdown for CVE-2024-32017, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.
Below is the Impact Analysis for CVE-2024-32017, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.
The EPSS score estimates the probability that this vulnerability will be exploited in the near future.
EPSS Score: 0.045% (probability of exploit)
EPSS Percentile: 18.35%
(lower percentile = lower relative risk)
This vulnerability is less risky than approximately 81.65% of others.
Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.