CVE-2024-31958 Vulnerability Analysis & Exploit Details

CVE-2024-31958
Vulnerability Scoring

6.8
/10
High Risk

If left unpatched, CVE-2024-31958 could lead to major system disruptions or data loss.

Attack Complexity Details

  • Attack Complexity: Low
    Exploits can be performed without significant complexity or special conditions.
  • Attack Vector: Local
    Vulnerability requires local system access.
  • Privileges Required: None
    No privileges are required for exploitation.
  • Scope: Unchanged
    Exploit remains within the originally vulnerable component.
  • User Interaction: None
    No user interaction is necessary for exploitation.

CVE-2024-31958 Details

Status: Awaiting Analysis

Last updated: 🕘 21 Nov 2024, 09:14 UTC
Originally published on: 🕔 07 Jun 2024, 17:15 UTC

Time between publication and last update: 166 days

CVSS Release: version 3

CVSS3 Source

cve@mitre.org

CVSS3 Type

Secondary

CVSS3 Vector

CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:L/A:H

CVE-2024-31958 Vulnerability Summary

CVE-2024-31958: An issue was discovered in Samsung Mobile Processor EExynos 2200, Exynos 1480, Exynos 2400. It lacks a check for the validation of native handles, which can result in an Out-of-Bounds Write.

Assessing the Risk of CVE-2024-31958

Access Complexity Graph

The exploitability of CVE-2024-31958 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).

Exploitability Analysis for CVE-2024-31958

With low attack complexity and no required privileges, CVE-2024-31958 is an easy target for cybercriminals. Organizations should prioritize immediate mitigation measures to prevent unauthorized access and data breaches.

Understanding AC and PR

A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.

Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.

Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.

CVSS Score Breakdown Chart

Above is the CVSS Sub-score Breakdown for CVE-2024-31958, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.

CIA Impact Analysis

Below is the Impact Analysis for CVE-2024-31958, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.

  • Confidentiality: None
    CVE-2024-31958 has no significant impact on data confidentiality.
  • Integrity: Low
    Exploiting CVE-2024-31958 may cause minor changes to data without severely impacting its accuracy.
  • Availability: High
    CVE-2024-31958 can disrupt system operations, potentially causing complete denial of service (DoS).

Exploit Prediction Scoring System (EPSS)

The EPSS score estimates the probability that this vulnerability will be exploited in the near future.

EPSS Score: 0.043% (probability of exploit)

EPSS Percentile: 12.0% (lower percentile = lower relative risk)
This vulnerability is less risky than approximately 88.0% of others.

CVE-2024-31958 References

External References

CWE Common Weakness Enumeration

CWE-354

CAPEC Common Attack Pattern Enumeration and Classification

  • Checksum Spoofing CAPEC-145 An adversary spoofs a checksum message for the purpose of making a payload appear to have a valid corresponding checksum. Checksums are used to verify message integrity. They consist of some value based on the value of the message they are protecting. Hash codes are a common checksum mechanism. Both the sender and recipient are able to compute the checksum based on the contents of the message. If the message contents change between the sender and recipient, the sender and recipient will compute different checksum values. Since the sender's checksum value is transmitted with the message, the recipient would know that a modification occurred. In checksum spoofing an adversary modifies the message body and then modifies the corresponding checksum so that the recipient's checksum calculation will match the checksum (created by the adversary) in the message. This would prevent the recipient from realizing that a change occurred.
  • Padding Oracle Crypto Attack CAPEC-463 An adversary is able to efficiently decrypt data without knowing the decryption key if a target system leaks data on whether or not a padding error happened while decrypting the ciphertext. A target system that leaks this type of information becomes the padding oracle and an adversary is able to make use of that oracle to efficiently decrypt data without knowing the decryption key by issuing on average 128*b calls to the padding oracle (where b is the number of bytes in the ciphertext block). In addition to performing decryption, an adversary is also able to produce valid ciphertexts (i.e., perform encryption) by using the padding oracle, all without knowing the encryption key.
  • Manipulating Writeable Configuration Files CAPEC-75 Generally these are manually edited files that are not in the preview of the system administrators, any ability on the attackers' behalf to modify these files, for example in a CVS repository, gives unauthorized access directly to the application, the same as authorized users.

Protect Your Infrastructure against CVE-2024-31958: Combat Critical CVE Threats

Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.

Other 5 Recently Published CVEs Vulnerabilities

  • CVE-2025-31203 – An integer overflow was addressed with improved input validation. This issue is fixed in macOS Sequoia 15.4, tvOS 18.4, iPadOS 17.7.6, macOS Sonoma...
  • CVE-2025-31202 – A null pointer dereference was addressed with improved input validation. This issue is fixed in iOS 18.4 and iPadOS 18.4, macOS Sequoia 15.4, tvOS ...
  • CVE-2025-31197 – The issue was addressed with improved checks. This issue is fixed in macOS Sequoia 15.4, tvOS 18.4, macOS Ventura 13.7.5, iPadOS 17.7.6, macOS Sono...
  • CVE-2025-30445 – A type confusion issue was addressed with improved checks. This issue is fixed in macOS Sequoia 15.4, tvOS 18.4, macOS Ventura 13.7.5, iPadOS 17.7....
  • CVE-2025-24271 – An access issue was addressed with improved access restrictions. This issue is fixed in macOS Sequoia 15.4, tvOS 18.4, macOS Ventura 13.7.5, iPadOS...