CVE-2023-54170
Vulnerability Scoring
Status: Awaiting Analysis
Last updated: 🕣 31 Dec 2025, 20:43 UTC
Originally published on: 🕐 30 Dec 2025, 13:16 UTC
Time between publication and last update: 1 days
CVSS Release:
CVE-2023-54170: In the Linux kernel, the following vulnerability has been resolved: keys: Fix linking a duplicate key to a keyring's assoc_array When making a DNS query inside the kernel using dns_query(), the request code can in rare cases end up creating a duplicate index key in the assoc_array of the destination keyring. It is eventually found by a BUG_ON() check in the assoc_array implementation and results in a crash. Example report: [2158499.700025] kernel BUG at ../lib/assoc_array.c:652! [2158499.700039] invalid opcode: 0000 [#1] SMP PTI [2158499.700065] CPU: 3 PID: 31985 Comm: kworker/3:1 Kdump: loaded Not tainted 5.3.18-150300.59.90-default #1 SLE15-SP3 [2158499.700096] Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 11/12/2020 [2158499.700351] Workqueue: cifsiod cifs_resolve_server [cifs] [2158499.700380] RIP: 0010:assoc_array_insert+0x85f/0xa40 [2158499.700401] Code: ff 74 2b 48 8b 3b 49 8b 45 18 4c 89 e6 48 83 e7 fe e8 95 ec 74 00 3b 45 88 7d db 85 c0 79 d4 0f 0b 0f 0b 0f 0b e8 41 f2 be ff <0f> 0b 0f 0b 81 7d 88 ff ff ff 7f 4c 89 eb 4c 8b ad 58 ff ff ff 0f [2158499.700448] RSP: 0018:ffffc0bd6187faf0 EFLAGS: 00010282 [2158499.700470] RAX: ffff9f1ea7da2fe8 RBX: ffff9f1ea7da2fc1 RCX: 0000000000000005 [2158499.700492] RDX: 0000000000000000 RSI: 0000000000000005 RDI: 0000000000000000 [2158499.700515] RBP: ffffc0bd6187fbb0 R08: ffff9f185faf1100 R09: 0000000000000000 [2158499.700538] R10: ffff9f1ea7da2cc0 R11: 000000005ed8cec8 R12: ffffc0bd6187fc28 [2158499.700561] R13: ffff9f15feb8d000 R14: ffff9f1ea7da2fc0 R15: ffff9f168dc0d740 [2158499.700585] FS: 0000000000000000(0000) GS:ffff9f185fac0000(0000) knlGS:0000000000000000 [2158499.700610] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [2158499.700630] CR2: 00007fdd94fca238 CR3: 0000000809d8c006 CR4: 00000000003706e0 [2158499.700702] Call Trace: [2158499.700741] ? key_alloc+0x447/0x4b0 [2158499.700768] ? __key_link_begin+0x43/0xa0 [2158499.700790] __key_link_begin+0x43/0xa0 [2158499.700814] request_key_and_link+0x2c7/0x730 [2158499.700847] ? dns_resolver_read+0x20/0x20 [dns_resolver] [2158499.700873] ? key_default_cmp+0x20/0x20 [2158499.700898] request_key_tag+0x43/0xa0 [2158499.700926] dns_query+0x114/0x2ca [dns_resolver] [2158499.701127] dns_resolve_server_name_to_ip+0x194/0x310 [cifs] [2158499.701164] ? scnprintf+0x49/0x90 [2158499.701190] ? __switch_to_asm+0x40/0x70 [2158499.701211] ? __switch_to_asm+0x34/0x70 [2158499.701405] reconn_set_ipaddr_from_hostname+0x81/0x2a0 [cifs] [2158499.701603] cifs_resolve_server+0x4b/0xd0 [cifs] [2158499.701632] process_one_work+0x1f8/0x3e0 [2158499.701658] worker_thread+0x2d/0x3f0 [2158499.701682] ? process_one_work+0x3e0/0x3e0 [2158499.701703] kthread+0x10d/0x130 [2158499.701723] ? kthread_park+0xb0/0xb0 [2158499.701746] ret_from_fork+0x1f/0x40 The situation occurs as follows: * Some kernel facility invokes dns_query() to resolve a hostname, for example, "abcdef". The function registers its global DNS resolver cache as current->cred.thread_keyring and passes the query to request_key_net() -> request_key_tag() -> request_key_and_link(). * Function request_key_and_link() creates a keyring_search_context object. Its match_data.cmp method gets set via a call to type->match_preparse() (resolves to dns_resolver_match_preparse()) to dns_resolver_cmp(). * Function request_key_and_link() continues and invokes search_process_keyrings_rcu() which returns that a given key was not found. The control is then passed to request_key_and_link() -> construct_alloc_key(). * Concurrently to that, a second task similarly makes a DNS query for "abcdef." and its result gets inserted into the DNS resolver cache. * Back on the first task, function construct_alloc_key() first runs __key_link_begin() to determine an assoc_array_edit operation to insert a new key. Index keys in the array are compared exactly as-is, using keyring_compare_object(). The operation ---truncated---
The exploitability of CVE-2023-54170 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).
No exploitability data is available for CVE-2023-54170.
A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.
Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.
Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.
Above is the CVSS Sub-score Breakdown for CVE-2023-54170, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.
Below is the Impact Analysis for CVE-2023-54170, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.
Unknown
Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.