CVE-2023-54012
Vulnerability Scoring
Status: Received on 24 Dec 2025, 11:15 UTC
Published on: 24 Dec 2025, 11:15 UTC
CVSS Release:
CVE-2023-54012: In the Linux kernel, the following vulnerability has been resolved: net: fix stack overflow when LRO is disabled for virtual interfaces When the virtual interface's feature is updated, it synchronizes the updated feature for its own lower interface. This propagation logic should be worked as the iteration, not recursively. But it works recursively due to the netdev notification unexpectedly. This problem occurs when it disables LRO only for the team and bonding interface type. team0 | +------+------+-----+-----+ | | | | | team1 team2 team3 ... team200 If team0's LRO feature is updated, it generates the NETDEV_FEAT_CHANGE event to its own lower interfaces(team1 ~ team200). It is worked by netdev_sync_lower_features(). So, the NETDEV_FEAT_CHANGE notification logic of each lower interface work iteratively. But generated NETDEV_FEAT_CHANGE event is also sent to the upper interface too. upper interface(team0) generates the NETDEV_FEAT_CHANGE event for its own lower interfaces again. lower and upper interfaces receive this event and generate this event again and again. So, the stack overflow occurs. But it is not the infinite loop issue. Because the netdev_sync_lower_features() updates features before generating the NETDEV_FEAT_CHANGE event. Already synchronized lower interfaces skip notification logic. So, it is just the problem that iteration logic is changed to the recursive unexpectedly due to the notification mechanism. Reproducer: ip link add team0 type team ethtool -K team0 lro on for i in {1..200} do ip link add team$i master team0 type team ethtool -K team$i lro on done ethtool -K team0 lro off In order to fix it, the notifier_ctx member of bonding/team is introduced.
The exploitability of CVE-2023-54012 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).
No exploitability data is available for CVE-2023-54012.
A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.
Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.
Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.
Above is the CVSS Sub-score Breakdown for CVE-2023-54012, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.
Below is the Impact Analysis for CVE-2023-54012, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.
Unknown
Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.