CVE-2023-54006
Vulnerability Scoring
Status: Received on 24 Dec 2025, 11:15 UTC
Published on: 24 Dec 2025, 11:15 UTC
CVSS Release:
CVE-2023-54006: In the Linux kernel, the following vulnerability has been resolved: af_unix: Fix data-race around unix_tot_inflight. unix_tot_inflight is changed under spin_lock(unix_gc_lock), but unix_release_sock() reads it locklessly. Let's use READ_ONCE() for unix_tot_inflight. Note that the writer side was marked by commit 9d6d7f1cb67c ("af_unix: annote lockless accesses to unix_tot_inflight & gc_in_progress") BUG: KCSAN: data-race in unix_inflight / unix_release_sock write (marked) to 0xffffffff871852b8 of 4 bytes by task 123 on cpu 1: unix_inflight+0x130/0x180 net/unix/scm.c:64 unix_attach_fds+0x137/0x1b0 net/unix/scm.c:123 unix_scm_to_skb net/unix/af_unix.c:1832 [inline] unix_dgram_sendmsg+0x46a/0x14f0 net/unix/af_unix.c:1955 sock_sendmsg_nosec net/socket.c:724 [inline] sock_sendmsg+0x148/0x160 net/socket.c:747 ____sys_sendmsg+0x4e4/0x610 net/socket.c:2493 ___sys_sendmsg+0xc6/0x140 net/socket.c:2547 __sys_sendmsg+0x94/0x140 net/socket.c:2576 __do_sys_sendmsg net/socket.c:2585 [inline] __se_sys_sendmsg net/socket.c:2583 [inline] __x64_sys_sendmsg+0x45/0x50 net/socket.c:2583 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3b/0x90 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x72/0xdc read to 0xffffffff871852b8 of 4 bytes by task 4891 on cpu 0: unix_release_sock+0x608/0x910 net/unix/af_unix.c:671 unix_release+0x59/0x80 net/unix/af_unix.c:1058 __sock_release+0x7d/0x170 net/socket.c:653 sock_close+0x19/0x30 net/socket.c:1385 __fput+0x179/0x5e0 fs/file_table.c:321 ____fput+0x15/0x20 fs/file_table.c:349 task_work_run+0x116/0x1a0 kernel/task_work.c:179 resume_user_mode_work include/linux/resume_user_mode.h:49 [inline] exit_to_user_mode_loop kernel/entry/common.c:171 [inline] exit_to_user_mode_prepare+0x174/0x180 kernel/entry/common.c:204 __syscall_exit_to_user_mode_work kernel/entry/common.c:286 [inline] syscall_exit_to_user_mode+0x1a/0x30 kernel/entry/common.c:297 do_syscall_64+0x4b/0x90 arch/x86/entry/common.c:86 entry_SYSCALL_64_after_hwframe+0x72/0xdc value changed: 0x00000000 -> 0x00000001 Reported by Kernel Concurrency Sanitizer on: CPU: 0 PID: 4891 Comm: systemd-coredum Not tainted 6.4.0-rc5-01219-gfa0e21fa4443 #5 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
The exploitability of CVE-2023-54006 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).
No exploitability data is available for CVE-2023-54006.
A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.
Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.
Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.
Above is the CVSS Sub-score Breakdown for CVE-2023-54006, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.
Below is the Impact Analysis for CVE-2023-54006, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.
Unknown
Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.