CVE-2023-53999
Vulnerability Scoring
Status: Received on 24 Dec 2025, 11:15 UTC
Published on: 24 Dec 2025, 11:15 UTC
CVSS Release:
CVE-2023-53999: In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: TC, Fix internal port memory leak The flow rule can be splited, and the extra post_act rules are added to post_act table. It's possible to trigger memleak when the rule forwards packets from internal port and over tunnel, in the case that, for example, CT 'new' state offload is allowed. As int_port object is assigned to the flow attribute of post_act rule, and its refcnt is incremented by mlx5e_tc_int_port_get(), but mlx5e_tc_int_port_put() is not called, the refcnt is never decremented, then int_port is never freed. The kmemleak reports the following error: unreferenced object 0xffff888128204b80 (size 64): comm "handler20", pid 50121, jiffies 4296973009 (age 642.932s) hex dump (first 32 bytes): 01 00 00 00 19 00 00 00 03 f0 00 00 04 00 00 00 ................ 98 77 67 41 81 88 ff ff 98 77 67 41 81 88 ff ff .wgA.....wgA.... backtrace: [<00000000e992680d>] kmalloc_trace+0x27/0x120 [<000000009e945a98>] mlx5e_tc_int_port_get+0x3f3/0xe20 [mlx5_core] [<0000000035a537f0>] mlx5e_tc_add_fdb_flow+0x473/0xcf0 [mlx5_core] [<0000000070c2cec6>] __mlx5e_add_fdb_flow+0x7cf/0xe90 [mlx5_core] [<000000005cc84048>] mlx5e_configure_flower+0xd40/0x4c40 [mlx5_core] [<000000004f8a2031>] mlx5e_rep_indr_offload.isra.0+0x10e/0x1c0 [mlx5_core] [<000000007df797dc>] mlx5e_rep_indr_setup_tc_cb+0x90/0x130 [mlx5_core] [<0000000016c15cc3>] tc_setup_cb_add+0x1cf/0x410 [<00000000a63305b4>] fl_hw_replace_filter+0x38f/0x670 [cls_flower] [<000000008bc9e77c>] fl_change+0x1fd5/0x4430 [cls_flower] [<00000000e7f766e4>] tc_new_tfilter+0x867/0x2010 [<00000000e101c0ef>] rtnetlink_rcv_msg+0x6fc/0x9f0 [<00000000e1111d44>] netlink_rcv_skb+0x12c/0x360 [<0000000082dd6c8b>] netlink_unicast+0x438/0x710 [<00000000fc568f70>] netlink_sendmsg+0x794/0xc50 [<0000000016e92590>] sock_sendmsg+0xc5/0x190 So fix this by moving int_port cleanup code to the flow attribute free helper, which is used by all the attribute free cases.
The exploitability of CVE-2023-53999 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).
No exploitability data is available for CVE-2023-53999.
A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.
Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.
Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.
Above is the CVSS Sub-score Breakdown for CVE-2023-53999, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.
Below is the Impact Analysis for CVE-2023-53999, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.
Unknown
Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.