CVE-2023-53989 Vulnerability Analysis & Exploit Details

CVE-2023-53989
Vulnerability Scoring

Analysis In Progress
Analysis In Progress

Attack Complexity Details

  • Attack Complexity:
    Attack Complexity Analysis In Progress
  • Attack Vector:
    Attack Vector Under Analysis
  • Privileges Required: None
    No authentication is required for exploitation.
  • Scope:
    Impact is confined to the initially vulnerable component.
  • User Interaction: None
    No user interaction is necessary for exploitation.

CVE-2023-53989 Details

Status: Received on 24 Dec 2025, 11:15 UTC

Published on: 24 Dec 2025, 11:15 UTC

CVSS Release:

CVE-2023-53989 Vulnerability Summary

CVE-2023-53989: In the Linux kernel, the following vulnerability has been resolved: arm64: mm: fix VA-range sanity check Both create_mapping_noalloc() and update_mapping_prot() sanity-check their 'virt' parameter, but the check itself doesn't make much sense. The condition used today appears to be a historical accident. The sanity-check condition: if ((virt >= PAGE_END) && (virt < VMALLOC_START)) { [ ... warning here ... ] return; } ... can only be true for the KASAN shadow region or the module region, and there's no reason to exclude these specifically for creating and updateing mappings. When arm64 support was first upstreamed in commit: c1cc1552616d0f35 ("arm64: MMU initialisation") ... the condition was: if (virt < VMALLOC_START) { [ ... warning here ... ] return; } At the time, VMALLOC_START was the lowest kernel address, and this was checking whether 'virt' would be translated via TTBR1. Subsequently in commit: 14c127c957c1c607 ("arm64: mm: Flip kernel VA space") ... the condition was changed to: if ((virt >= VA_START) && (virt < VMALLOC_START)) { [ ... warning here ... ] return; } This appear to have been a thinko. The commit moved the linear map to the bottom of the kernel address space, with VMALLOC_START being at the halfway point. The old condition would warn for changes to the linear map below this, and at the time VA_START was the end of the linear map. Subsequently we cleaned up the naming of VA_START in commit: 77ad4ce69321abbe ("arm64: memory: rename VA_START to PAGE_END") ... keeping the erroneous condition as: if ((virt >= PAGE_END) && (virt < VMALLOC_START)) { [ ... warning here ... ] return; } Correct the condition to check against the start of the TTBR1 address space, which is currently PAGE_OFFSET. This simplifies the logic, and more clearly matches the "outside kernel range" message in the warning.

Assessing the Risk of CVE-2023-53989

Access Complexity Graph

The exploitability of CVE-2023-53989 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).

Exploitability Analysis for CVE-2023-53989

No exploitability data is available for CVE-2023-53989.

Understanding AC and PR

A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.

Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.

Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.

CVSS Score Breakdown Chart

Above is the CVSS Sub-score Breakdown for CVE-2023-53989, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.

CIA Impact Analysis

Below is the Impact Analysis for CVE-2023-53989, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.

  • Confidentiality: None
    CVE-2023-53989 does not compromise confidentiality.
  • Integrity: None
    CVE-2023-53989 does not impact data integrity.
  • Availability: None
    CVE-2023-53989 does not affect system availability.

CVE-2023-53989 References

External References

CWE Common Weakness Enumeration

Unknown

Protect Your Infrastructure against CVE-2023-53989: Combat Critical CVE Threats

Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.

Other 5 Recently Published CVEs Vulnerabilities

  • CVE-2025-15166 – A vulnerability was found in itsourcecode Online Cake Ordering System 1.0. This affects an unknown function of the file /updatesupplier.php?action=...
  • CVE-2025-15165 – A vulnerability has been found in itsourcecode Online Cake Ordering System 1.0. The impacted element is an unknown function of the file /updatecust...
  • CVE-2025-15164 – A security flaw has been discovered in Tenda WH450 1.0.0.18. This affects an unknown part of the file /goform/SafeMacFilter. The manipulation of th...
  • CVE-2025-15163 – A vulnerability was identified in Tenda WH450 1.0.0.18. Affected by this issue is some unknown functionality of the file /goform/SafeEmailFilter. T...
  • CVE-2025-15067 – Unrestricted Upload of File with Dangerous Type vulnerability in Innorix Innorix WP allows Upload a Web Shell to a Web Server.This issue affects In...