CVE-2023-53752
Vulnerability Scoring
Status: Awaiting Analysis
Published on: 08 Dec 2025, 02:15 UTC
CVSS Release:
CVE-2023-53752: In the Linux kernel, the following vulnerability has been resolved: net: deal with integer overflows in kmalloc_reserve() Blamed commit changed: ptr = kmalloc(size); if (ptr) size = ksize(ptr); size = kmalloc_size_roundup(size); ptr = kmalloc(size); This allowed various crash as reported by syzbot [1] and Kyle Zeng. Problem is that if @size is bigger than 0x80000001, kmalloc_size_roundup(size) returns 2^32. kmalloc_reserve() uses a 32bit variable (obj_size), so 2^32 is truncated to 0. kmalloc(0) returns ZERO_SIZE_PTR which is not handled by skb allocations. Following trace can be triggered if a netdev->mtu is set close to 0x7fffffff We might in the future limit netdev->mtu to more sensible limit (like KMALLOC_MAX_SIZE). This patch is based on a syzbot report, and also a report and tentative fix from Kyle Zeng. [1] BUG: KASAN: user-memory-access in __build_skb_around net/core/skbuff.c:294 [inline] BUG: KASAN: user-memory-access in __alloc_skb+0x3c4/0x6e8 net/core/skbuff.c:527 Write of size 32 at addr 00000000fffffd10 by task syz-executor.4/22554 CPU: 1 PID: 22554 Comm: syz-executor.4 Not tainted 6.1.39-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 07/03/2023 Call trace: dump_backtrace+0x1c8/0x1f4 arch/arm64/kernel/stacktrace.c:279 show_stack+0x2c/0x3c arch/arm64/kernel/stacktrace.c:286 __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x120/0x1a0 lib/dump_stack.c:106 print_report+0xe4/0x4b4 mm/kasan/report.c:398 kasan_report+0x150/0x1ac mm/kasan/report.c:495 kasan_check_range+0x264/0x2a4 mm/kasan/generic.c:189 memset+0x40/0x70 mm/kasan/shadow.c:44 __build_skb_around net/core/skbuff.c:294 [inline] __alloc_skb+0x3c4/0x6e8 net/core/skbuff.c:527 alloc_skb include/linux/skbuff.h:1316 [inline] igmpv3_newpack+0x104/0x1088 net/ipv4/igmp.c:359 add_grec+0x81c/0x1124 net/ipv4/igmp.c:534 igmpv3_send_cr net/ipv4/igmp.c:667 [inline] igmp_ifc_timer_expire+0x1b0/0x1008 net/ipv4/igmp.c:810 call_timer_fn+0x1c0/0x9f0 kernel/time/timer.c:1474 expire_timers kernel/time/timer.c:1519 [inline] __run_timers+0x54c/0x710 kernel/time/timer.c:1790 run_timer_softirq+0x28/0x4c kernel/time/timer.c:1803 _stext+0x380/0xfbc ____do_softirq+0x14/0x20 arch/arm64/kernel/irq.c:79 call_on_irq_stack+0x24/0x4c arch/arm64/kernel/entry.S:891 do_softirq_own_stack+0x20/0x2c arch/arm64/kernel/irq.c:84 invoke_softirq kernel/softirq.c:437 [inline] __irq_exit_rcu+0x1c0/0x4cc kernel/softirq.c:683 irq_exit_rcu+0x14/0x78 kernel/softirq.c:695 el0_interrupt+0x7c/0x2e0 arch/arm64/kernel/entry-common.c:717 __el0_irq_handler_common+0x18/0x24 arch/arm64/kernel/entry-common.c:724 el0t_64_irq_handler+0x10/0x1c arch/arm64/kernel/entry-common.c:729 el0t_64_irq+0x1a0/0x1a4 arch/arm64/kernel/entry.S:584
The exploitability of CVE-2023-53752 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).
No exploitability data is available for CVE-2023-53752.
A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.
Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.
Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.
Above is the CVSS Sub-score Breakdown for CVE-2023-53752, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.
Below is the Impact Analysis for CVE-2023-53752, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.
Unknown
Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.