CVE-2023-53663
Vulnerability Scoring
Status: Awaiting Analysis
Last updated: 🕢 08 Oct 2025, 19:38 UTC
Originally published on: 🕓 07 Oct 2025, 16:15 UTC
Time between publication and last update: 1 days
CVSS Release:
CVE-2023-53663: In the Linux kernel, the following vulnerability has been resolved: KVM: nSVM: Check instead of asserting on nested TSC scaling support Check for nested TSC scaling support on nested SVM VMRUN instead of asserting that TSC scaling is exposed to L1 if L1's MSR_AMD64_TSC_RATIO has diverged from KVM's default. Userspace can trigger the WARN at will by writing the MSR and then updating guest CPUID to hide the feature (modifying guest CPUID is allowed anytime before KVM_RUN). E.g. hacking KVM's state_test selftest to do vcpu_set_msr(vcpu, MSR_AMD64_TSC_RATIO, 0); vcpu_clear_cpuid_feature(vcpu, X86_FEATURE_TSCRATEMSR); after restoring state in a new VM+vCPU yields an endless supply of: ------------[ cut here ]------------ WARNING: CPU: 164 PID: 62565 at arch/x86/kvm/svm/nested.c:699 nested_vmcb02_prepare_control+0x3d6/0x3f0 [kvm_amd] Call Trace: <TASK> enter_svm_guest_mode+0x114/0x560 [kvm_amd] nested_svm_vmrun+0x260/0x330 [kvm_amd] vmrun_interception+0x29/0x30 [kvm_amd] svm_invoke_exit_handler+0x35/0x100 [kvm_amd] svm_handle_exit+0xe7/0x180 [kvm_amd] kvm_arch_vcpu_ioctl_run+0x1eab/0x2570 [kvm] kvm_vcpu_ioctl+0x4c9/0x5b0 [kvm] __se_sys_ioctl+0x7a/0xc0 __x64_sys_ioctl+0x21/0x30 do_syscall_64+0x41/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x45ca1b Note, the nested #VMEXIT path has the same flaw, but needs a different fix and will be handled separately.
The exploitability of CVE-2023-53663 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).
No exploitability data is available for CVE-2023-53663.
A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.
Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.
Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.
Above is the CVSS Sub-score Breakdown for CVE-2023-53663, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.
Below is the Impact Analysis for CVE-2023-53663, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.
Unknown
Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.