CVE-2023-53593
Vulnerability Scoring
Status: Awaiting Analysis
Last updated: 🕝 06 Oct 2025, 14:56 UTC
Originally published on: 🕓 04 Oct 2025, 16:15 UTC
Time between publication and last update: 1 days
CVSS Release:
CVE-2023-53593: In the Linux kernel, the following vulnerability has been resolved: cifs: Release folio lock on fscache read hit. Under the current code, when cifs_readpage_worker is called, the call contract is that the callee should unlock the page. This is documented in the read_folio section of Documentation/filesystems/vfs.rst as: > The filesystem should unlock the folio once the read has completed, > whether it was successful or not. Without this change, when fscache is in use and cache hit occurs during a read, the page lock is leaked, producing the following stack on subsequent reads (via mmap) to the page: $ cat /proc/3890/task/12864/stack [<0>] folio_wait_bit_common+0x124/0x350 [<0>] filemap_read_folio+0xad/0xf0 [<0>] filemap_fault+0x8b1/0xab0 [<0>] __do_fault+0x39/0x150 [<0>] do_fault+0x25c/0x3e0 [<0>] __handle_mm_fault+0x6ca/0xc70 [<0>] handle_mm_fault+0xe9/0x350 [<0>] do_user_addr_fault+0x225/0x6c0 [<0>] exc_page_fault+0x84/0x1b0 [<0>] asm_exc_page_fault+0x27/0x30 This requires a reboot to resolve; it is a deadlock. Note however that the call to cifs_readpage_from_fscache does mark the page clean, but does not free the folio lock. This happens in __cifs_readpage_from_fscache on success. Releasing the lock at that point however is not appropriate as cifs_readahead also calls cifs_readpage_from_fscache and *does* unconditionally release the lock after its return. This change therefore effectively makes cifs_readpage_worker work like cifs_readahead.
The exploitability of CVE-2023-53593 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).
No exploitability data is available for CVE-2023-53593.
A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.
Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.
Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.
Above is the CVSS Sub-score Breakdown for CVE-2023-53593, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.
Below is the Impact Analysis for CVE-2023-53593, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.
Unknown
Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.