CVE-2023-53577
Vulnerability Scoring
Status: Awaiting Analysis
Last updated: 🕝 06 Oct 2025, 14:56 UTC
Originally published on: 🕓 04 Oct 2025, 16:15 UTC
Time between publication and last update: 1 days
CVSS Release:
CVE-2023-53577: In the Linux kernel, the following vulnerability has been resolved: bpf, cpumap: Make sure kthread is running before map update returns The following warning was reported when running stress-mode enabled xdp_redirect_cpu with some RT threads: ------------[ cut here ]------------ WARNING: CPU: 4 PID: 65 at kernel/bpf/cpumap.c:135 CPU: 4 PID: 65 Comm: kworker/4:1 Not tainted 6.5.0-rc2+ #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996) Workqueue: events cpu_map_kthread_stop RIP: 0010:put_cpu_map_entry+0xda/0x220 ...... Call Trace: <TASK> ? show_regs+0x65/0x70 ? __warn+0xa5/0x240 ...... ? put_cpu_map_entry+0xda/0x220 cpu_map_kthread_stop+0x41/0x60 process_one_work+0x6b0/0xb80 worker_thread+0x96/0x720 kthread+0x1a5/0x1f0 ret_from_fork+0x3a/0x70 ret_from_fork_asm+0x1b/0x30 </TASK> The root cause is the same as commit 436901649731 ("bpf: cpumap: Fix memory leak in cpu_map_update_elem"). The kthread is stopped prematurely by kthread_stop() in cpu_map_kthread_stop(), and kthread() doesn't call cpu_map_kthread_run() at all but XDP program has already queued some frames or skbs into ptr_ring. So when __cpu_map_ring_cleanup() checks the ptr_ring, it will find it was not emptied and report a warning. An alternative fix is to use __cpu_map_ring_cleanup() to drop these pending frames or skbs when kthread_stop() returns -EINTR, but it may confuse the user, because these frames or skbs have been handled correctly by XDP program. So instead of dropping these frames or skbs, just make sure the per-cpu kthread is running before __cpu_map_entry_alloc() returns. After apply the fix, the error handle for kthread_stop() will be unnecessary because it will always return 0, so just remove it.
The exploitability of CVE-2023-53577 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).
No exploitability data is available for CVE-2023-53577.
A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.
Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.
Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.
Above is the CVSS Sub-score Breakdown for CVE-2023-53577, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.
Below is the Impact Analysis for CVE-2023-53577, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.
Unknown
Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.