CVE-2023-53102 Vulnerability Analysis & Exploit Details

CVE-2023-53102
Vulnerability Scoring

Analysis In Progress
Analysis In Progress

Attack Complexity Details

  • Attack Complexity:
    Attack Complexity Analysis In Progress
  • Attack Vector:
    Attack Vector Under Analysis
  • Privileges Required: None
    No authentication is required for exploitation.
  • Scope:
    Impact is confined to the initially vulnerable component.
  • User Interaction: None
    No user interaction is necessary for exploitation.

CVE-2023-53102 Details

Status: Awaiting Analysis

Last updated: 🕣 05 May 2025, 20:54 UTC
Originally published on: 🕓 02 May 2025, 16:15 UTC

Time between publication and last update: 3 days

CVSS Release:

CVE-2023-53102 Vulnerability Summary

CVE-2023-53102: In the Linux kernel, the following vulnerability has been resolved: ice: xsk: disable txq irq before flushing hw ice_qp_dis() intends to stop a given queue pair that is a target of xsk pool attach/detach. One of the steps is to disable interrupts on these queues. It currently is broken in a way that txq irq is turned off *after* HW flush which in turn takes no effect. ice_qp_dis(): -> ice_qvec_dis_irq() --> disable rxq irq --> flush hw -> ice_vsi_stop_tx_ring() -->disable txq irq Below splat can be triggered by following steps: - start xdpsock WITHOUT loading xdp prog - run xdp_rxq_info with XDP_TX action on this interface - start traffic - terminate xdpsock [ 256.312485] BUG: kernel NULL pointer dereference, address: 0000000000000018 [ 256.319560] #PF: supervisor read access in kernel mode [ 256.324775] #PF: error_code(0x0000) - not-present page [ 256.329994] PGD 0 P4D 0 [ 256.332574] Oops: 0000 [#1] PREEMPT SMP NOPTI [ 256.337006] CPU: 3 PID: 32 Comm: ksoftirqd/3 Tainted: G OE 6.2.0-rc5+ #51 [ 256.345218] Hardware name: Intel Corporation S2600WFT/S2600WFT, BIOS SE5C620.86B.02.01.0008.031920191559 03/19/2019 [ 256.355807] RIP: 0010:ice_clean_rx_irq_zc+0x9c/0x7d0 [ice] [ 256.361423] Code: b7 8f 8a 00 00 00 66 39 ca 0f 84 f1 04 00 00 49 8b 47 40 4c 8b 24 d0 41 0f b7 45 04 66 25 ff 3f 66 89 04 24 0f 84 85 02 00 00 <49> 8b 44 24 18 0f b7 14 24 48 05 00 01 00 00 49 89 04 24 49 89 44 [ 256.380463] RSP: 0018:ffffc900088bfd20 EFLAGS: 00010206 [ 256.385765] RAX: 000000000000003c RBX: 0000000000000035 RCX: 000000000000067f [ 256.393012] RDX: 0000000000000775 RSI: 0000000000000000 RDI: ffff8881deb3ac80 [ 256.400256] RBP: 000000000000003c R08: ffff889847982710 R09: 0000000000010000 [ 256.407500] R10: ffffffff82c060c0 R11: 0000000000000004 R12: 0000000000000000 [ 256.414746] R13: ffff88811165eea0 R14: ffffc9000d255000 R15: ffff888119b37600 [ 256.421990] FS: 0000000000000000(0000) GS:ffff8897e0cc0000(0000) knlGS:0000000000000000 [ 256.430207] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 256.436036] CR2: 0000000000000018 CR3: 0000000005c0a006 CR4: 00000000007706e0 [ 256.443283] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 256.450527] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 256.457770] PKRU: 55555554 [ 256.460529] Call Trace: [ 256.463015] <TASK> [ 256.465157] ? ice_xmit_zc+0x6e/0x150 [ice] [ 256.469437] ice_napi_poll+0x46d/0x680 [ice] [ 256.473815] ? _raw_spin_unlock_irqrestore+0x1b/0x40 [ 256.478863] __napi_poll+0x29/0x160 [ 256.482409] net_rx_action+0x136/0x260 [ 256.486222] __do_softirq+0xe8/0x2e5 [ 256.489853] ? smpboot_thread_fn+0x2c/0x270 [ 256.494108] run_ksoftirqd+0x2a/0x50 [ 256.497747] smpboot_thread_fn+0x1c1/0x270 [ 256.501907] ? __pfx_smpboot_thread_fn+0x10/0x10 [ 256.506594] kthread+0xea/0x120 [ 256.509785] ? __pfx_kthread+0x10/0x10 [ 256.513597] ret_from_fork+0x29/0x50 [ 256.517238] </TASK> In fact, irqs were not disabled and napi managed to be scheduled and run while xsk_pool pointer was still valid, but SW ring of xdp_buff pointers was already freed. To fix this, call ice_qvec_dis_irq() after ice_vsi_stop_tx_ring(). Also while at it, remove redundant ice_clean_rx_ring() call - this is handled in ice_qp_clean_rings().

Assessing the Risk of CVE-2023-53102

Access Complexity Graph

The exploitability of CVE-2023-53102 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).

Exploitability Analysis for CVE-2023-53102

No exploitability data is available for CVE-2023-53102.

Understanding AC and PR

A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.

Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.

Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.

CVSS Score Breakdown Chart

Above is the CVSS Sub-score Breakdown for CVE-2023-53102, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.

CIA Impact Analysis

Below is the Impact Analysis for CVE-2023-53102, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.

  • Confidentiality: None
    CVE-2023-53102 does not compromise confidentiality.
  • Integrity: None
    CVE-2023-53102 does not impact data integrity.
  • Availability: None
    CVE-2023-53102 does not affect system availability.

CVE-2023-53102 References

External References

CWE Common Weakness Enumeration

Unknown

Protect Your Infrastructure against CVE-2023-53102: Combat Critical CVE Threats

Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.

Other 5 Recently Published CVEs Vulnerabilities

  • CVE-2025-4483 – A vulnerability, which was classified as critical, has been found in itsourcecode Gym Management System 1.0. Affected by this issue is some unknown...
  • CVE-2025-4482 – A vulnerability classified as critical was found in Project Worlds Student Project Allocation System 1.0. Affected by this vulnerability is an unkn...
  • CVE-2025-1993 – IBM App Connect Enterprise Certified Container 8.1, 8.2, 9.0, 9.1, 9.2, 10.0, 10.1, 11.0, 11.1, 11.2, 11.3, 11.4, 11.5, 11.6, 12.0, 12.1, 12.2, 12....
  • CVE-2025-4481 – A vulnerability was found in SourceCodester Apartment Visitor Management System 1.0. It has been rated as critical. This issue affects some unknown...
  • CVE-2025-4480 – A vulnerability was found in code-projects Simple College Management System 1.0. It has been declared as critical. This vulnerability affects the f...