CVE-2023-52909
Vulnerability Scoring
The vulnerability CVE-2023-52909 could compromise system integrity but typically requires user interaction to be exploited.
The vulnerability CVE-2023-52909 could compromise system integrity but typically requires user interaction to be exploited.
Status: Analyzed
Last updated: 🕝 12 Sep 2024, 14:52 UTC
Originally published on: 🕖 21 Aug 2024, 07:15 UTC
Time between publication and last update: 22 days
CVSS Release: version 3
nvd@nist.gov
Primary
CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:H
CVE-2023-52909: In the Linux kernel, the following vulnerability has been resolved: nfsd: fix handling of cached open files in nfsd4_open codepath Commit fb70bf124b05 ("NFSD: Instantiate a struct file when creating a regular NFSv4 file") added the ability to cache an open fd over a compound. There are a couple of problems with the way this currently works: It's racy, as a newly-created nfsd_file can end up with its PENDING bit cleared while the nf is hashed, and the nf_file pointer is still zeroed out. Other tasks can find it in this state and they expect to see a valid nf_file, and can oops if nf_file is NULL. Also, there is no guarantee that we'll end up creating a new nfsd_file if one is already in the hash. If an extant entry is in the hash with a valid nf_file, nfs4_get_vfs_file will clobber its nf_file pointer with the value of op_file and the old nf_file will leak. Fix both issues by making a new nfsd_file_acquirei_opened variant that takes an optional file pointer. If one is present when this is called, we'll take a new reference to it instead of trying to open the file. If the nfsd_file already has a valid nf_file, we'll just ignore the optional file and pass the nfsd_file back as-is. Also rework the tracepoints a bit to allow for an "opened" variant and don't try to avoid counting acquisitions in the case where we already have a cached open file.
The exploitability of CVE-2023-52909 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).
This vulnerability, CVE-2023-52909, requires a high level of attack complexity and low privileges, making it difficult but not impossible to exploit. Organizations should ensure robust security configurations to mitigate risks.
A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.
Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.
Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.
Above is the CVSS Sub-score Breakdown for CVE-2023-52909, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.
Below is the Impact Analysis for CVE-2023-52909, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.
The EPSS score estimates the probability that this vulnerability will be exploited in the near future.
EPSS Score: 0.042% (probability of exploit)
EPSS Percentile: 5.02%
(lower percentile = lower relative risk)
This vulnerability is less risky than approximately 94.98% of others.
Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.