CVE-2023-52235 Vulnerability Analysis & Exploit Details

CVE-2023-52235
Vulnerability Scoring

8.8
/10
Severe Risk

Cybersecurity professionals consider CVE-2023-52235 an immediate threat requiring urgent mitigation.

Attack Complexity Details

  • Attack Complexity: Low
    Exploits can be performed without significant complexity or special conditions.
  • Attack Vector: Network
    Vulnerability is exploitable over a network without physical access.
  • Privileges Required: None
    No privileges are required for exploitation.
  • Scope: Unchanged
    Exploit remains within the originally vulnerable component.
  • User Interaction: Required
    User interaction is necessary for successful exploitation.

CVE-2023-52235 Details

Status: Awaiting Analysis

Last updated: 🕗 13 Mar 2025, 20:15 UTC
Originally published on: 🕕 05 Apr 2024, 06:15 UTC

Time between publication and last update: 342 days

CVSS Release: version 3

CVSS3 Source

134c704f-9b21-4f2e-91b3-4a467353bcc0

CVSS3 Type

Secondary

CVSS3 Vector

CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H

CVE-2023-52235 Vulnerability Summary

CVE-2023-52235: SpaceX Starlink Wi-Fi router GEN 2 before 2023.53.0 and Starlink Dish before 07dd2798-ff15-4722-a9ee-de28928aed34 allow CSRF (e.g., for a reboot) via a DNS Rebinding attack.

Assessing the Risk of CVE-2023-52235

Access Complexity Graph

The exploitability of CVE-2023-52235 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).

Exploitability Analysis for CVE-2023-52235

With low attack complexity and no required privileges, CVE-2023-52235 is an easy target for cybercriminals. Organizations should prioritize immediate mitigation measures to prevent unauthorized access and data breaches.

Understanding AC and PR

A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.

Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.

Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.

CVSS Score Breakdown Chart

Above is the CVSS Sub-score Breakdown for CVE-2023-52235, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.

CIA Impact Analysis

Below is the Impact Analysis for CVE-2023-52235, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.

  • Confidentiality: High
    Exploiting CVE-2023-52235 can result in unauthorized access to sensitive data, severely compromising data privacy.
  • Integrity: High
    CVE-2023-52235 could allow unauthorized modifications to data, potentially affecting system reliability and trust.
  • Availability: High
    CVE-2023-52235 can disrupt system operations, potentially causing complete denial of service (DoS).

Exploit Prediction Scoring System (EPSS)

The EPSS score estimates the probability that this vulnerability will be exploited in the near future.

EPSS Score: 0.043% (probability of exploit)

EPSS Percentile: 12.0% (lower percentile = lower relative risk)
This vulnerability is less risky than approximately 88.0% of others.

CVE-2023-52235 References

External References

CWE Common Weakness Enumeration

CWE-350

CAPEC Common Attack Pattern Enumeration and Classification

  • DNS Cache Poisoning CAPEC-142 A domain name server translates a domain name (such as www.example.com) into an IP address that Internet hosts use to contact Internet resources. An adversary modifies a public DNS cache to cause certain names to resolve to incorrect addresses that the adversary specifies. The result is that client applications that rely upon the targeted cache for domain name resolution will be directed not to the actual address of the specified domain name but to some other address. Adversaries can use this to herd clients to sites that install malware on the victim's computer or to masquerade as part of a Pharming attack.
  • DNS Rebinding CAPEC-275 An adversary serves content whose IP address is resolved by a DNS server that the adversary controls. After initial contact by a web browser (or similar client), the adversary changes the IP address to which its name resolves, to an address within the target organization that is not publicly accessible. This allows the web browser to examine this internal address on behalf of the adversary.
  • User-Controlled Filename CAPEC-73 An attack of this type involves an adversary inserting malicious characters (such as a XSS redirection) into a filename, directly or indirectly that is then used by the target software to generate HTML text or other potentially executable content. Many websites rely on user-generated content and dynamically build resources like files, filenames, and URL links directly from user supplied data. In this attack pattern, the attacker uploads code that can execute in the client browser and/or redirect the client browser to a site that the attacker owns. All XSS attack payload variants can be used to pass and exploit these vulnerabilities.
  • Pharming CAPEC-89 A pharming attack occurs when the victim is fooled into entering sensitive data into supposedly trusted locations, such as an online bank site or a trading platform. An attacker can impersonate these supposedly trusted sites and have the victim be directed to their site rather than the originally intended one. Pharming does not require script injection or clicking on malicious links for the attack to succeed.

Protect Your Infrastructure against CVE-2023-52235: Combat Critical CVE Threats

Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.

Other 5 Recently Published CVEs Vulnerabilities

  • CVE-2025-31203 – An integer overflow was addressed with improved input validation. This issue is fixed in macOS Sequoia 15.4, tvOS 18.4, iPadOS 17.7.6, macOS Sonoma...
  • CVE-2025-31202 – A null pointer dereference was addressed with improved input validation. This issue is fixed in iOS 18.4 and iPadOS 18.4, macOS Sequoia 15.4, tvOS ...
  • CVE-2025-31197 – The issue was addressed with improved checks. This issue is fixed in macOS Sequoia 15.4, tvOS 18.4, macOS Ventura 13.7.5, iPadOS 17.7.6, macOS Sono...
  • CVE-2025-30445 – A type confusion issue was addressed with improved checks. This issue is fixed in macOS Sequoia 15.4, tvOS 18.4, macOS Ventura 13.7.5, iPadOS 17.7....
  • CVE-2025-24271 – An access issue was addressed with improved access restrictions. This issue is fixed in macOS Sequoia 15.4, tvOS 18.4, macOS Ventura 13.7.5, iPadOS...