CVE-2023-46737
Vulnerability Scoring
Exploiting CVE-2023-46737 requires specific conditions, leading to a moderate security impact.
Exploiting CVE-2023-46737 requires specific conditions, leading to a moderate security impact.
Status: Modified
Last updated: 🕗 21 Nov 2024, 08:29 UTC
Originally published on: 🕕 07 Nov 2023, 18:15 UTC
Time between publication and last update: 379 days
CVSS Release: version 3
security-advisories@github.com
Secondary
CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:U/C:N/I:N/A:L
CVE-2023-46737: Cosign is a sigstore signing tool for OCI containers. Cosign is susceptible to a denial of service by an attacker controlled registry. An attacker who controls a remote registry can return a high number of attestations and/or signatures to Cosign and cause Cosign to enter a long loop resulting in an endless data attack. The root cause is that Cosign loops through all attestations fetched from the remote registry in pkg/cosign.FetchAttestations. The attacker needs to compromise the registry or make a request to a registry they control. When doing so, the attacker must return a high number of attestations in the response to Cosign. The result will be that the attacker can cause Cosign to go into a long or infinite loop that will prevent other users from verifying their data. In Kyvernos case, an attacker whose privileges are limited to making requests to the cluster can make a request with an image reference to their own registry, trigger the infinite loop and deny other users from completing their admission requests. Alternatively, the attacker can obtain control of the registry used by an organization and return a high number of attestations instead the expected number of attestations. The issue can be mitigated rather simply by setting a limit to the limit of attestations that Cosign will loop through. The limit does not need to be high to be within the vast majority of use cases and still prevent the endless data attack. This issue has been patched in version 2.2.1 and users are advised to upgrade.
The exploitability of CVE-2023-46737 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).
CVE-2023-46737 presents a challenge to exploit due to its high attack complexity, but the absence of privilege requirements still makes it a viable target for skilled attackers. A thorough security review is advised.
A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.
Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.
Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.
Above is the CVSS Sub-score Breakdown for CVE-2023-46737, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.
Below is the Impact Analysis for CVE-2023-46737, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.
The EPSS score estimates the probability that this vulnerability will be exploited in the near future.
EPSS Score: 0.075% (probability of exploit)
EPSS Percentile: 35.87%
(lower percentile = lower relative risk)
This vulnerability is less risky than approximately 64.13% of others.
Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.