CVE-2022-50880 Vulnerability Analysis & Exploit Details

CVE-2022-50880
Vulnerability Scoring

Analysis In Progress
Analysis In Progress

Attack Complexity Details

  • Attack Complexity:
    Attack Complexity Analysis In Progress
  • Attack Vector:
    Attack Vector Under Analysis
  • Privileges Required: None
    No authentication is required for exploitation.
  • Scope:
    Impact is confined to the initially vulnerable component.
  • User Interaction: None
    No user interaction is necessary for exploitation.

CVE-2022-50880 Details

Status: Awaiting Analysis

Last updated: 🕣 31 Dec 2025, 20:43 UTC
Originally published on: 🕐 30 Dec 2025, 13:16 UTC

Time between publication and last update: 1 days

CVSS Release:

CVE-2022-50880 Vulnerability Summary

CVE-2022-50880: In the Linux kernel, the following vulnerability has been resolved: wifi: ath10k: add peer map clean up for peer delete in ath10k_sta_state() When peer delete failed in a disconnect operation, use-after-free detected by KFENCE in below log. It is because for each vdev_id and address, it has only one struct ath10k_peer, it is allocated in ath10k_peer_map_event(). When connected to an AP, it has more than one HTT_T2H_MSG_TYPE_PEER_MAP reported from firmware, then the array peer_map of struct ath10k will be set muti-elements to the same ath10k_peer in ath10k_peer_map_event(). When peer delete failed in ath10k_sta_state(), the ath10k_peer will be free for the 1st peer id in array peer_map of struct ath10k, and then use-after-free happened for the 2nd peer id because they map to the same ath10k_peer. And clean up all peers in array peer_map for the ath10k_peer, then user-after-free disappeared peer map event log: [ 306.911021] wlan0: authenticate with b0:2a:43:e6:75:0e [ 306.957187] ath10k_pci 0000:01:00.0: mac vdev 0 peer create b0:2a:43:e6:75:0e (new sta) sta 1 / 32 peer 1 / 33 [ 306.957395] ath10k_pci 0000:01:00.0: htt peer map vdev 0 peer b0:2a:43:e6:75:0e id 246 [ 306.957404] ath10k_pci 0000:01:00.0: htt peer map vdev 0 peer b0:2a:43:e6:75:0e id 198 [ 306.986924] ath10k_pci 0000:01:00.0: htt peer map vdev 0 peer b0:2a:43:e6:75:0e id 166 peer unmap event log: [ 435.715691] wlan0: deauthenticating from b0:2a:43:e6:75:0e by local choice (Reason: 3=DEAUTH_LEAVING) [ 435.716802] ath10k_pci 0000:01:00.0: mac vdev 0 peer delete b0:2a:43:e6:75:0e sta ffff990e0e9c2b50 (sta gone) [ 435.717177] ath10k_pci 0000:01:00.0: htt peer unmap vdev 0 peer b0:2a:43:e6:75:0e id 246 [ 435.717186] ath10k_pci 0000:01:00.0: htt peer unmap vdev 0 peer b0:2a:43:e6:75:0e id 198 [ 435.717193] ath10k_pci 0000:01:00.0: htt peer unmap vdev 0 peer b0:2a:43:e6:75:0e id 166 use-after-free log: [21705.888627] wlan0: deauthenticating from d0:76:8f:82:be:75 by local choice (Reason: 3=DEAUTH_LEAVING) [21713.799910] ath10k_pci 0000:01:00.0: failed to delete peer d0:76:8f:82:be:75 for vdev 0: -110 [21713.799925] ath10k_pci 0000:01:00.0: found sta peer d0:76:8f:82:be:75 (ptr 0000000000000000 id 102) entry on vdev 0 after it was supposedly removed [21713.799968] ================================================================== [21713.799991] BUG: KFENCE: use-after-free read in ath10k_sta_state+0x265/0xb8a [ath10k_core] [21713.799991] [21713.799997] Use-after-free read at 0x00000000abe1c75e (in kfence-#69): [21713.800010] ath10k_sta_state+0x265/0xb8a [ath10k_core] [21713.800041] drv_sta_state+0x115/0x677 [mac80211] [21713.800059] __sta_info_destroy_part2+0xb1/0x133 [mac80211] [21713.800076] __sta_info_flush+0x11d/0x162 [mac80211] [21713.800093] ieee80211_set_disassoc+0x12d/0x2f4 [mac80211] [21713.800110] ieee80211_mgd_deauth+0x26c/0x29b [mac80211] [21713.800137] cfg80211_mlme_deauth+0x13f/0x1bb [cfg80211] [21713.800153] nl80211_deauthenticate+0xf8/0x121 [cfg80211] [21713.800161] genl_rcv_msg+0x38e/0x3be [21713.800166] netlink_rcv_skb+0x89/0xf7 [21713.800171] genl_rcv+0x28/0x36 [21713.800176] netlink_unicast+0x179/0x24b [21713.800181] netlink_sendmsg+0x3a0/0x40e [21713.800187] sock_sendmsg+0x72/0x76 [21713.800192] ____sys_sendmsg+0x16d/0x1e3 [21713.800196] ___sys_sendmsg+0x95/0xd1 [21713.800200] __sys_sendmsg+0x85/0xbf [21713.800205] do_syscall_64+0x43/0x55 [21713.800210] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [21713.800213] [21713.800219] kfence-#69: 0x000000009149b0d5-0x000000004c0697fb, size=1064, cache=kmalloc-2k [21713.800219] [21713.800224] allocated by task 13 on cpu 0 at 21705.501373s: [21713.800241] ath10k_peer_map_event+0x7e/0x154 [ath10k_core] [21713.800254] ath10k_htt_t2h_msg_handler+0x586/0x1039 [ath10k_core] [21713.800265] ath10k_htt_htc_t2h_msg_handler+0x12/0x28 [ath10k_core] [21713.800277] ath10k_htc_rx_completion_handler+0x14c/0x1b5 [ath10k_core] [21713.800283] ath10k_pci_process_rx_cb+0x195/0x1d ---truncated---

Assessing the Risk of CVE-2022-50880

Access Complexity Graph

The exploitability of CVE-2022-50880 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).

Exploitability Analysis for CVE-2022-50880

No exploitability data is available for CVE-2022-50880.

Understanding AC and PR

A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.

Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.

Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.

CVSS Score Breakdown Chart

Above is the CVSS Sub-score Breakdown for CVE-2022-50880, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.

CIA Impact Analysis

Below is the Impact Analysis for CVE-2022-50880, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.

  • Confidentiality: None
    CVE-2022-50880 does not compromise confidentiality.
  • Integrity: None
    CVE-2022-50880 does not impact data integrity.
  • Availability: None
    CVE-2022-50880 does not affect system availability.

CVE-2022-50880 References

External References

CWE Common Weakness Enumeration

Unknown

Protect Your Infrastructure against CVE-2022-50880: Combat Critical CVE Threats

Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.

Other 5 Recently Published CVEs Vulnerabilities

  • CVE-2026-1251 – The SupportCandy – Helpdesk & Customer Support Ticket System plugin for WordPress is vulnerable to Insecure Direct Object Reference in all versions...
  • CVE-2026-0683 – The SupportCandy – Helpdesk & Customer Support Ticket System plugin for WordPress is vulnerable to SQL Injection via the Number-type custom field f...
  • CVE-2026-1431 – The Booking Calendar plugin for WordPress is vulnerable to unauthorized access of data due to a missing capability check on the wpbc_ajax_WPBC_FLEX...
  • CVE-2025-15525 – The Ajax Load More – Infinite Scroll, Load More, & Lazy Load plugin for WordPress is vulnerable to unauthorized access of data due to incorrect aut...
  • CVE-2025-15510 – The NEX-Forms – Ultimate Forms Plugin for WordPress is vulnerable to unauthorized access of data due to a missing capability check on the NF5_Expor...