CVE-2022-50459 Vulnerability Analysis & Exploit Details

CVE-2022-50459
Vulnerability Scoring

Analysis In Progress
Analysis In Progress

Attack Complexity Details

  • Attack Complexity:
    Attack Complexity Analysis In Progress
  • Attack Vector:
    Attack Vector Under Analysis
  • Privileges Required: None
    No authentication is required for exploitation.
  • Scope:
    Impact is confined to the initially vulnerable component.
  • User Interaction: None
    No user interaction is necessary for exploitation.

CVE-2022-50459 Details

Status: Awaiting Analysis

Last updated: 🕖 02 Oct 2025, 19:12 UTC
Originally published on: 🕛 01 Oct 2025, 12:15 UTC

Time between publication and last update: 1 days

CVSS Release:

CVE-2022-50459 Vulnerability Summary

CVE-2022-50459: In the Linux kernel, the following vulnerability has been resolved: scsi: iscsi: iscsi_tcp: Fix null-ptr-deref while calling getpeername() Fix a NULL pointer crash that occurs when we are freeing the socket at the same time we access it via sysfs. The problem is that: 1. iscsi_sw_tcp_conn_get_param() and iscsi_sw_tcp_host_get_param() take the frwd_lock and do sock_hold() then drop the frwd_lock. sock_hold() does a get on the "struct sock". 2. iscsi_sw_tcp_release_conn() does sockfd_put() which does the last put on the "struct socket" and that does __sock_release() which sets the sock->ops to NULL. 3. iscsi_sw_tcp_conn_get_param() and iscsi_sw_tcp_host_get_param() then call kernel_getpeername() which accesses the NULL sock->ops. Above we do a get on the "struct sock", but we needed a get on the "struct socket". Originally, we just held the frwd_lock the entire time but in commit bcf3a2953d36 ("scsi: iscsi: iscsi_tcp: Avoid holding spinlock while calling getpeername()") we switched to refcount based because the network layer changed and started taking a mutex in that path, so we could no longer hold the frwd_lock. Instead of trying to maintain multiple refcounts, this just has us use a mutex for accessing the socket in the interface code paths.

Assessing the Risk of CVE-2022-50459

Access Complexity Graph

The exploitability of CVE-2022-50459 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).

Exploitability Analysis for CVE-2022-50459

No exploitability data is available for CVE-2022-50459.

Understanding AC and PR

A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.

Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.

Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.

CVSS Score Breakdown Chart

Above is the CVSS Sub-score Breakdown for CVE-2022-50459, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.

CIA Impact Analysis

Below is the Impact Analysis for CVE-2022-50459, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.

  • Confidentiality: None
    CVE-2022-50459 does not compromise confidentiality.
  • Integrity: None
    CVE-2022-50459 does not impact data integrity.
  • Availability: None
    CVE-2022-50459 does not affect system availability.

CVE-2022-50459 References

External References

CWE Common Weakness Enumeration

Unknown

Protect Your Infrastructure against CVE-2022-50459: Combat Critical CVE Threats

Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.

Other 5 Recently Published CVEs Vulnerabilities

  • CVE-2025-13735 – Out-of-bounds Read vulnerability in ASR1903、ASR3901 in ASR Lapwing_Linux on Linux (nr_fw modules). This vulnerability is associated with program fi...
  • CVE-2025-9558 – There is a potential OOB Write vulnerability in the gen_prov_start function in pb_adv.c. The full length of the received data is copied into the li...
  • CVE-2025-9557 – ‭An out-of-bound write can lead to an arbitrary code execution. Even on devices with some form of memory protection, this can still lead to‬ ‭a cra...
  • CVE-2025-59820 – In KDE Krita before 5.2.13, loading a manipulated TGA file could result in a heap-based buffer overflow in plugins/impex/tga/kis_tga_import.cpp (ak...
  • CVE-2025-55174 – In KDE Skanpage before 25.08.0, an attempt at file overwrite can result in the contents of the new file at the beginning followed by the partial co...