CVE-2022-50450
Vulnerability Scoring
Status: Awaiting Analysis
Last updated: 🕖 02 Oct 2025, 19:12 UTC
Originally published on: 🕛 01 Oct 2025, 12:15 UTC
Time between publication and last update: 1 days
CVSS Release:
CVE-2022-50450: In the Linux kernel, the following vulnerability has been resolved: libbpf: Use elf_getshdrnum() instead of e_shnum This commit replace e_shnum with the elf_getshdrnum() helper to fix two oss-fuzz-reported heap-buffer overflow in __bpf_object__open. Both reports are incorrectly marked as fixed and while still being reproducible in the latest libbpf. # clusterfuzz-testcase-minimized-bpf-object-fuzzer-5747922482888704 libbpf: loading object 'fuzz-object' from buffer libbpf: sec_cnt is 0 libbpf: elf: section(1) .data, size 0, link 538976288, flags 2020202020202020, type=2 libbpf: elf: section(2) .data, size 32, link 538976288, flags 202020202020ff20, type=1 ================================================================= ==13==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x6020000000c0 at pc 0x0000005a7b46 bp 0x7ffd12214af0 sp 0x7ffd12214ae8 WRITE of size 4 at 0x6020000000c0 thread T0 SCARINESS: 46 (4-byte-write-heap-buffer-overflow-far-from-bounds) #0 0x5a7b45 in bpf_object__elf_collect /src/libbpf/src/libbpf.c:3414:24 #1 0x5733c0 in bpf_object_open /src/libbpf/src/libbpf.c:7223:16 #2 0x5739fd in bpf_object__open_mem /src/libbpf/src/libbpf.c:7263:20 ... The issue lie in libbpf's direct use of e_shnum field in ELF header as the section header count. Where as libelf implemented an extra logic that, when e_shnum == 0 && e_shoff != 0, will use sh_size member of the initial section header as the real section header count (part of ELF spec to accommodate situation where section header counter is larger than SHN_LORESERVE). The above inconsistency lead to libbpf writing into a zero-entry calloc area. So intead of using e_shnum directly, use the elf_getshdrnum() helper provided by libelf to retrieve the section header counter into sec_cnt.
The exploitability of CVE-2022-50450 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).
No exploitability data is available for CVE-2022-50450.
A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.
Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.
Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.
Above is the CVSS Sub-score Breakdown for CVE-2022-50450, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.
Below is the Impact Analysis for CVE-2022-50450, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.
Unknown
Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.