CVE-2022-50370 Vulnerability Analysis & Exploit Details

CVE-2022-50370
Vulnerability Scoring

Analysis In Progress
Analysis In Progress

Attack Complexity Details

  • Attack Complexity:
    Attack Complexity Analysis In Progress
  • Attack Vector:
    Attack Vector Under Analysis
  • Privileges Required: None
    No authentication is required for exploitation.
  • Scope:
    Impact is confined to the initially vulnerable component.
  • User Interaction: None
    No user interaction is necessary for exploitation.

CVE-2022-50370 Details

Status: Awaiting Analysis

Last updated: 🕜 18 Sep 2025, 13:43 UTC
Originally published on: 🕒 17 Sep 2025, 15:15 UTC

CVSS Release:

CVE-2022-50370 Vulnerability Summary

CVE-2022-50370: In the Linux kernel, the following vulnerability has been resolved: i2c: designware: Fix handling of real but unexpected device interrupts Commit c7b79a752871 ("mfd: intel-lpss: Add Intel Alder Lake PCH-S PCI IDs") caused a regression on certain Gigabyte motherboards for Intel Alder Lake-S where system crashes to NULL pointer dereference in i2c_dw_xfer_msg() when system resumes from S3 sleep state ("deep"). I was able to debug the issue on Gigabyte Z690 AORUS ELITE and made following notes: - Issue happens when resuming from S3 but not when resuming from "s2idle" - PCI device 00:15.0 == i2c_designware.0 is already in D0 state when system enters into pci_pm_resume_noirq() while all other i2c_designware PCI devices are in D3. Devices were runtime suspended and in D3 prior entering into suspend - Interrupt comes after pci_pm_resume_noirq() when device interrupts are re-enabled - According to register dump the interrupt really comes from the i2c_designware.0. Controller is enabled, I2C target address register points to a one detectable I2C device address 0x60 and the DW_IC_RAW_INTR_STAT register START_DET, STOP_DET, ACTIVITY and TX_EMPTY bits are set indicating completed I2C transaction. My guess is that the firmware uses this controller to communicate with an on-board I2C device during resume but does not disable the controller before giving control to an operating system. I was told the UEFI update fixes this but never the less it revealed the driver is not ready to handle TX_EMPTY (or RX_FULL) interrupt when device is supposed to be idle and state variables are not set (especially the dev->msgs pointer which may point to NULL or stale old data). Introduce a new software status flag STATUS_ACTIVE indicating when the controller is active in driver point of view. Now treat all interrupts that occur when is not set as unexpected and mask all interrupts from the controller.

Assessing the Risk of CVE-2022-50370

Access Complexity Graph

The exploitability of CVE-2022-50370 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).

Exploitability Analysis for CVE-2022-50370

No exploitability data is available for CVE-2022-50370.

Understanding AC and PR

A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.

Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.

Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.

CVSS Score Breakdown Chart

Above is the CVSS Sub-score Breakdown for CVE-2022-50370, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.

CIA Impact Analysis

Below is the Impact Analysis for CVE-2022-50370, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.

  • Confidentiality: None
    CVE-2022-50370 does not compromise confidentiality.
  • Integrity: None
    CVE-2022-50370 does not impact data integrity.
  • Availability: None
    CVE-2022-50370 does not affect system availability.

CVE-2022-50370 References

External References

CWE Common Weakness Enumeration

Unknown

Protect Your Infrastructure against CVE-2022-50370: Combat Critical CVE Threats

Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.

Other 5 Recently Published CVEs Vulnerabilities

  • CVE-2025-13735 – Out-of-bounds Read vulnerability in ASR1903、ASR3901 in ASR Lapwing_Linux on Linux (nr_fw modules). This vulnerability is associated with program fi...
  • CVE-2025-9558 – There is a potential OOB Write vulnerability in the gen_prov_start function in pb_adv.c. The full length of the received data is copied into the li...
  • CVE-2025-9557 – ‭An out-of-bound write can lead to an arbitrary code execution. Even on devices with some form of memory protection, this can still lead to‬ ‭a cra...
  • CVE-2025-59820 – In KDE Krita before 5.2.13, loading a manipulated TGA file could result in a heap-based buffer overflow in plugins/impex/tga/kis_tga_import.cpp (ak...
  • CVE-2025-55174 – In KDE Skanpage before 25.08.0, an attempt at file overwrite can result in the contents of the new file at the beginning followed by the partial co...