CVE-2022-50103
Vulnerability Scoring
Status: Awaiting Analysis
Published on: 18 Jun 2025, 11:15 UTC
CVSS Release:
CVE-2022-50103: In the Linux kernel, the following vulnerability has been resolved: sched, cpuset: Fix dl_cpu_busy() panic due to empty cs->cpus_allowed With cgroup v2, the cpuset's cpus_allowed mask can be empty indicating that the cpuset will just use the effective CPUs of its parent. So cpuset_can_attach() can call task_can_attach() with an empty mask. This can lead to cpumask_any_and() returns nr_cpu_ids causing the call to dl_bw_of() to crash due to percpu value access of an out of bound CPU value. For example: [80468.182258] BUG: unable to handle page fault for address: ffffffff8b6648b0 : [80468.191019] RIP: 0010:dl_cpu_busy+0x30/0x2b0 : [80468.207946] Call Trace: [80468.208947] cpuset_can_attach+0xa0/0x140 [80468.209953] cgroup_migrate_execute+0x8c/0x490 [80468.210931] cgroup_update_dfl_csses+0x254/0x270 [80468.211898] cgroup_subtree_control_write+0x322/0x400 [80468.212854] kernfs_fop_write_iter+0x11c/0x1b0 [80468.213777] new_sync_write+0x11f/0x1b0 [80468.214689] vfs_write+0x1eb/0x280 [80468.215592] ksys_write+0x5f/0xe0 [80468.216463] do_syscall_64+0x5c/0x80 [80468.224287] entry_SYSCALL_64_after_hwframe+0x44/0xae Fix that by using effective_cpus instead. For cgroup v1, effective_cpus is the same as cpus_allowed. For v2, effective_cpus is the real cpumask to be used by tasks within the cpuset anyway. Also update task_can_attach()'s 2nd argument name to cs_effective_cpus to reflect the change. In addition, a check is added to task_can_attach() to guard against the possibility that cpumask_any_and() may return a value >= nr_cpu_ids.
The exploitability of CVE-2022-50103 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).
No exploitability data is available for CVE-2022-50103.
A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.
Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.
Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.
Above is the CVSS Sub-score Breakdown for CVE-2022-50103, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.
Below is the Impact Analysis for CVE-2022-50103, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.
Unknown
Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.