CVE-2022-49979
Vulnerability Scoring
Status: Awaiting Analysis
Published on: 18 Jun 2025, 11:15 UTC
CVSS Release:
CVE-2022-49979: In the Linux kernel, the following vulnerability has been resolved: net: fix refcount bug in sk_psock_get (2) Syzkaller reports refcount bug as follows: ------------[ cut here ]------------ refcount_t: saturated; leaking memory. WARNING: CPU: 1 PID: 3605 at lib/refcount.c:19 refcount_warn_saturate+0xf4/0x1e0 lib/refcount.c:19 Modules linked in: CPU: 1 PID: 3605 Comm: syz-executor208 Not tainted 5.18.0-syzkaller-03023-g7e062cda7d90 #0 <TASK> __refcount_add_not_zero include/linux/refcount.h:163 [inline] __refcount_inc_not_zero include/linux/refcount.h:227 [inline] refcount_inc_not_zero include/linux/refcount.h:245 [inline] sk_psock_get+0x3bc/0x410 include/linux/skmsg.h:439 tls_data_ready+0x6d/0x1b0 net/tls/tls_sw.c:2091 tcp_data_ready+0x106/0x520 net/ipv4/tcp_input.c:4983 tcp_data_queue+0x25f2/0x4c90 net/ipv4/tcp_input.c:5057 tcp_rcv_state_process+0x1774/0x4e80 net/ipv4/tcp_input.c:6659 tcp_v4_do_rcv+0x339/0x980 net/ipv4/tcp_ipv4.c:1682 sk_backlog_rcv include/net/sock.h:1061 [inline] __release_sock+0x134/0x3b0 net/core/sock.c:2849 release_sock+0x54/0x1b0 net/core/sock.c:3404 inet_shutdown+0x1e0/0x430 net/ipv4/af_inet.c:909 __sys_shutdown_sock net/socket.c:2331 [inline] __sys_shutdown_sock net/socket.c:2325 [inline] __sys_shutdown+0xf1/0x1b0 net/socket.c:2343 __do_sys_shutdown net/socket.c:2351 [inline] __se_sys_shutdown net/socket.c:2349 [inline] __x64_sys_shutdown+0x50/0x70 net/socket.c:2349 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 </TASK> During SMC fallback process in connect syscall, kernel will replaces TCP with SMC. In order to forward wakeup smc socket waitqueue after fallback, kernel will sets clcsk->sk_user_data to origin smc socket in smc_fback_replace_callbacks(). Later, in shutdown syscall, kernel will calls sk_psock_get(), which treats the clcsk->sk_user_data as psock type, triggering the refcnt warning. So, the root cause is that smc and psock, both will use sk_user_data field. So they will mismatch this field easily. This patch solves it by using another bit(defined as SK_USER_DATA_PSOCK) in PTRMASK, to mark whether sk_user_data points to a psock object or not. This patch depends on a PTRMASK introduced in commit f1ff5ce2cd5e ("net, sk_msg: Clear sk_user_data pointer on clone if tagged"). For there will possibly be more flags in the sk_user_data field, this patch also refactor sk_user_data flags code to be more generic to improve its maintainability.
The exploitability of CVE-2022-49979 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).
No exploitability data is available for CVE-2022-49979.
A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.
Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.
Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.
Above is the CVSS Sub-score Breakdown for CVE-2022-49979, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.
Below is the Impact Analysis for CVE-2022-49979, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.
Unknown
Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.