CVE-2022-49900 Vulnerability Analysis & Exploit Details

CVE-2022-49900
Vulnerability Scoring

Analysis In Progress
Analysis In Progress

Attack Complexity Details

  • Attack Complexity:
    Attack Complexity Analysis In Progress
  • Attack Vector:
    Attack Vector Under Analysis
  • Privileges Required: None
    No authentication is required for exploitation.
  • Scope:
    Impact is confined to the initially vulnerable component.
  • User Interaction: None
    No user interaction is necessary for exploitation.

CVE-2022-49900 Details

Status: Awaiting Analysis

Last updated: 🕜 02 May 2025, 13:52 UTC
Originally published on: 🕒 01 May 2025, 15:16 UTC

CVSS Release:

CVE-2022-49900 Vulnerability Summary

CVE-2022-49900: In the Linux kernel, the following vulnerability has been resolved: i2c: piix4: Fix adapter not be removed in piix4_remove() In piix4_probe(), the piix4 adapter will be registered in: piix4_probe() piix4_add_adapters_sb800() / piix4_add_adapter() i2c_add_adapter() Based on the probed device type, piix4_add_adapters_sb800() or single piix4_add_adapter() will be called. For the former case, piix4_adapter_count is set as the number of adapters, while for antoher case it is not set and kept default *zero*. When piix4 is removed, piix4_remove() removes the adapters added in piix4_probe(), basing on the piix4_adapter_count value. Because the count is zero for the single adapter case, the adapter won't be removed and makes the sources allocated for adapter leaked, such as the i2c client and device. These sources can still be accessed by i2c or bus and cause problems. An easily reproduced case is that if a new adapter is registered, i2c will get the leaked adapter and try to call smbus_algorithm, which was already freed: Triggered by: rmmod i2c_piix4 && modprobe max31730 BUG: unable to handle page fault for address: ffffffffc053d860 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page Oops: 0000 [#1] PREEMPT SMP KASAN CPU: 0 PID: 3752 Comm: modprobe Tainted: G Hardware name: QEMU Standard PC (i440FX + PIIX, 1996) RIP: 0010:i2c_default_probe (drivers/i2c/i2c-core-base.c:2259) i2c_core RSP: 0018:ffff888107477710 EFLAGS: 00000246 ... <TASK> i2c_detect (drivers/i2c/i2c-core-base.c:2302) i2c_core __process_new_driver (drivers/i2c/i2c-core-base.c:1336) i2c_core bus_for_each_dev (drivers/base/bus.c:301) i2c_for_each_dev (drivers/i2c/i2c-core-base.c:1823) i2c_core i2c_register_driver (drivers/i2c/i2c-core-base.c:1861) i2c_core do_one_initcall (init/main.c:1296) do_init_module (kernel/module/main.c:2455) ... </TASK> ---[ end trace 0000000000000000 ]--- Fix this problem by correctly set piix4_adapter_count as 1 for the single adapter so it can be normally removed.

Assessing the Risk of CVE-2022-49900

Access Complexity Graph

The exploitability of CVE-2022-49900 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).

Exploitability Analysis for CVE-2022-49900

No exploitability data is available for CVE-2022-49900.

Understanding AC and PR

A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.

Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.

Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.

CVSS Score Breakdown Chart

Above is the CVSS Sub-score Breakdown for CVE-2022-49900, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.

CIA Impact Analysis

Below is the Impact Analysis for CVE-2022-49900, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.

  • Confidentiality: None
    CVE-2022-49900 does not compromise confidentiality.
  • Integrity: None
    CVE-2022-49900 does not impact data integrity.
  • Availability: None
    CVE-2022-49900 does not affect system availability.

CVE-2022-49900 References

External References

CWE Common Weakness Enumeration

Unknown

Protect Your Infrastructure against CVE-2022-49900: Combat Critical CVE Threats

Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.

Other 5 Recently Published CVEs Vulnerabilities

  • CVE-2025-4488 – A vulnerability was found in itsourcecode Gym Management System 1.0. It has been declared as critical. Affected by this vulnerability is an unknown...
  • CVE-2025-4487 – A vulnerability was found in itsourcecode Gym Management System 1.0. It has been classified as critical. Affected is an unknown function of the fil...
  • CVE-2025-4486 – A vulnerability was found in itsourcecode Gym Management System 1.0 and classified as critical. This issue affects some unknown processing of the f...
  • CVE-2025-4485 – A vulnerability has been found in itsourcecode Gym Management System 1.0 and classified as critical. This vulnerability affects unknown code of the...
  • CVE-2025-4484 – A vulnerability, which was classified as critical, was found in itsourcecode Gym Management System 1.0. This affects an unknown part of the file /a...