CVE-2022-49767 Vulnerability Analysis & Exploit Details

CVE-2022-49767
Vulnerability Scoring

Analysis In Progress
Analysis In Progress

Attack Complexity Details

  • Attack Complexity:
    Attack Complexity Analysis In Progress
  • Attack Vector:
    Attack Vector Under Analysis
  • Privileges Required: None
    No authentication is required for exploitation.
  • Scope:
    Impact is confined to the initially vulnerable component.
  • User Interaction: None
    No user interaction is necessary for exploitation.

CVE-2022-49767 Details

Status: Awaiting Analysis

Last updated: 🕜 02 May 2025, 13:53 UTC
Originally published on: 🕒 01 May 2025, 15:15 UTC

CVSS Release:

CVE-2022-49767 Vulnerability Summary

CVE-2022-49767: In the Linux kernel, the following vulnerability has been resolved: 9p/trans_fd: always use O_NONBLOCK read/write syzbot is reporting hung task at p9_fd_close() [1], for p9_mux_poll_stop() from p9_conn_destroy() from p9_fd_close() is failing to interrupt already started kernel_read() from p9_fd_read() from p9_read_work() and/or kernel_write() from p9_fd_write() from p9_write_work() requests. Since p9_socket_open() sets O_NONBLOCK flag, p9_mux_poll_stop() does not need to interrupt kernel_read()/kernel_write(). However, since p9_fd_open() does not set O_NONBLOCK flag, but pipe blocks unless signal is pending, p9_mux_poll_stop() needs to interrupt kernel_read()/kernel_write() when the file descriptor refers to a pipe. In other words, pipe file descriptor needs to be handled as if socket file descriptor. We somehow need to interrupt kernel_read()/kernel_write() on pipes. A minimal change, which this patch is doing, is to set O_NONBLOCK flag from p9_fd_open(), for O_NONBLOCK flag does not affect reading/writing of regular files. But this approach changes O_NONBLOCK flag on userspace- supplied file descriptors (which might break userspace programs), and O_NONBLOCK flag could be changed by userspace. It would be possible to set O_NONBLOCK flag every time p9_fd_read()/p9_fd_write() is invoked, but still remains small race window for clearing O_NONBLOCK flag. If we don't want to manipulate O_NONBLOCK flag, we might be able to surround kernel_read()/kernel_write() with set_thread_flag(TIF_SIGPENDING) and recalc_sigpending(). Since p9_read_work()/p9_write_work() works are processed by kernel threads which process global system_wq workqueue, signals could not be delivered from remote threads when p9_mux_poll_stop() from p9_conn_destroy() from p9_fd_close() is called. Therefore, calling set_thread_flag(TIF_SIGPENDING)/recalc_sigpending() every time would be needed if we count on signals for making kernel_read()/kernel_write() non-blocking. [Dominique: add comment at Christian's suggestion]

Assessing the Risk of CVE-2022-49767

Access Complexity Graph

The exploitability of CVE-2022-49767 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).

Exploitability Analysis for CVE-2022-49767

No exploitability data is available for CVE-2022-49767.

Understanding AC and PR

A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.

Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.

Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.

CVSS Score Breakdown Chart

Above is the CVSS Sub-score Breakdown for CVE-2022-49767, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.

CIA Impact Analysis

Below is the Impact Analysis for CVE-2022-49767, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.

  • Confidentiality: None
    CVE-2022-49767 does not compromise confidentiality.
  • Integrity: None
    CVE-2022-49767 does not impact data integrity.
  • Availability: None
    CVE-2022-49767 does not affect system availability.

CVE-2022-49767 References

External References

CWE Common Weakness Enumeration

Unknown

Protect Your Infrastructure against CVE-2022-49767: Combat Critical CVE Threats

Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.

Other 5 Recently Published CVEs Vulnerabilities

  • CVE-2025-4485 – A vulnerability has been found in itsourcecode Gym Management System 1.0 and classified as critical. This vulnerability affects unknown code of the...
  • CVE-2025-4484 – A vulnerability, which was classified as critical, was found in itsourcecode Gym Management System 1.0. This affects an unknown part of the file /a...
  • CVE-2025-4483 – A vulnerability, which was classified as critical, has been found in itsourcecode Gym Management System 1.0. Affected by this issue is some unknown...
  • CVE-2025-4482 – A vulnerability classified as critical was found in Project Worlds Student Project Allocation System 1.0. Affected by this vulnerability is an unkn...
  • CVE-2025-1993 – IBM App Connect Enterprise Certified Container 8.1, 8.2, 9.0, 9.1, 9.2, 10.0, 10.1, 11.0, 11.1, 11.2, 11.3, 11.4, 11.5, 11.6, 12.0, 12.1, 12.2, 12....