CVE-2022-49456
Vulnerability Scoring
Status: Received on 26 Feb 2025, 07:01 UTC
Published on: 26 Feb 2025, 07:01 UTC
CVSS Release:
CVE-2022-49456: In the Linux kernel, the following vulnerability has been resolved: bonding: fix missed rcu protection When removing the rcu_read_lock in bond_ethtool_get_ts_info() as discussed [1], I didn't notice it could be called via setsockopt, which doesn't hold rcu lock, as syzbot pointed: stack backtrace: CPU: 0 PID: 3599 Comm: syz-executor317 Not tainted 5.18.0-rc5-syzkaller-01392-g01f4685797a5 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106 bond_option_active_slave_get_rcu include/net/bonding.h:353 [inline] bond_ethtool_get_ts_info+0x32c/0x3a0 drivers/net/bonding/bond_main.c:5595 __ethtool_get_ts_info+0x173/0x240 net/ethtool/common.c:554 ethtool_get_phc_vclocks+0x99/0x110 net/ethtool/common.c:568 sock_timestamping_bind_phc net/core/sock.c:869 [inline] sock_set_timestamping+0x3a3/0x7e0 net/core/sock.c:916 sock_setsockopt+0x543/0x2ec0 net/core/sock.c:1221 __sys_setsockopt+0x55e/0x6a0 net/socket.c:2223 __do_sys_setsockopt net/socket.c:2238 [inline] __se_sys_setsockopt net/socket.c:2235 [inline] __x64_sys_setsockopt+0xba/0x150 net/socket.c:2235 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7f8902c8eb39 Fix it by adding rcu_read_lock and take a ref on the real_dev. Since dev_hold() and dev_put() can take NULL these days, we can skip checking if real_dev exist. [1] https://lore.kernel.org/netdev/27565.1642742439@famine/
The exploitability of CVE-2022-49456 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).
No exploitability data is available for CVE-2022-49456.
A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.
Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.
Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.
Above is the CVSS Sub-score Breakdown for CVE-2022-49456, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.
Below is the Impact Analysis for CVE-2022-49456, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.
The EPSS score estimates the probability that this vulnerability will be exploited in the near future.
EPSS Score: 0.045% (probability of exploit)
EPSS Percentile: 18.4%
(lower percentile = lower relative risk)
This vulnerability is less risky than approximately 81.6% of others.
Unknown
Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.