CVE-2022-48644 Vulnerability Analysis & Exploit Details

CVE-2022-48644
Vulnerability Scoring

Analysis In Progress
Analysis In Progress

Attack Complexity Details

  • Attack Complexity:
    Attack Complexity Analysis In Progress
  • Attack Vector:
    Attack Vector Under Analysis
  • Privileges Required: None
    No authentication is required for exploitation.
  • Scope:
    Impact is confined to the initially vulnerable component.
  • User Interaction: None
    No user interaction is necessary for exploitation.

CVE-2022-48644 Details

Status: Awaiting Analysis

Last updated: 🕢 21 Nov 2024, 07:33 UTC
Originally published on: 🕐 28 Apr 2024, 13:15 UTC

Time between publication and last update: 206 days

CVSS Release:

CVE-2022-48644 Vulnerability Summary

CVE-2022-48644: In the Linux kernel, the following vulnerability has been resolved: net/sched: taprio: avoid disabling offload when it was never enabled In an incredibly strange API design decision, qdisc->destroy() gets called even if qdisc->init() never succeeded, not exclusively since commit 87b60cfacf9f ("net_sched: fix error recovery at qdisc creation"), but apparently also earlier (in the case of qdisc_create_dflt()). The taprio qdisc does not fully acknowledge this when it attempts full offload, because it starts off with q->flags = TAPRIO_FLAGS_INVALID in taprio_init(), then it replaces q->flags with TCA_TAPRIO_ATTR_FLAGS parsed from netlink (in taprio_change(), tail called from taprio_init()). But in taprio_destroy(), we call taprio_disable_offload(), and this determines what to do based on FULL_OFFLOAD_IS_ENABLED(q->flags). But looking at the implementation of FULL_OFFLOAD_IS_ENABLED() (a bitwise check of bit 1 in q->flags), it is invalid to call this macro on q->flags when it contains TAPRIO_FLAGS_INVALID, because that is set to U32_MAX, and therefore FULL_OFFLOAD_IS_ENABLED() will return true on an invalid set of flags. As a result, it is possible to crash the kernel if user space forces an error between setting q->flags = TAPRIO_FLAGS_INVALID, and the calling of taprio_enable_offload(). This is because drivers do not expect the offload to be disabled when it was never enabled. The error that we force here is to attach taprio as a non-root qdisc, but instead as child of an mqprio root qdisc: $ tc qdisc add dev swp0 root handle 1: \ mqprio num_tc 8 map 0 1 2 3 4 5 6 7 \ queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 hw 0 $ tc qdisc replace dev swp0 parent 1:1 \ taprio num_tc 8 map 0 1 2 3 4 5 6 7 \ queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 base-time 0 \ sched-entry S 0x7f 990000 sched-entry S 0x80 100000 \ flags 0x0 clockid CLOCK_TAI Unable to handle kernel paging request at virtual address fffffffffffffff8 [fffffffffffffff8] pgd=0000000000000000, p4d=0000000000000000 Internal error: Oops: 96000004 [#1] PREEMPT SMP Call trace: taprio_dump+0x27c/0x310 vsc9959_port_setup_tc+0x1f4/0x460 felix_port_setup_tc+0x24/0x3c dsa_slave_setup_tc+0x54/0x27c taprio_disable_offload.isra.0+0x58/0xe0 taprio_destroy+0x80/0x104 qdisc_create+0x240/0x470 tc_modify_qdisc+0x1fc/0x6b0 rtnetlink_rcv_msg+0x12c/0x390 netlink_rcv_skb+0x5c/0x130 rtnetlink_rcv+0x1c/0x2c Fix this by keeping track of the operations we made, and undo the offload only if we actually did it. I've added "bool offloaded" inside a 4 byte hole between "int clockid" and "atomic64_t picos_per_byte". Now the first cache line looks like below: $ pahole -C taprio_sched net/sched/sch_taprio.o struct taprio_sched { struct Qdisc * * qdiscs; /* 0 8 */ struct Qdisc * root; /* 8 8 */ u32 flags; /* 16 4 */ enum tk_offsets tk_offset; /* 20 4 */ int clockid; /* 24 4 */ bool offloaded; /* 28 1 */ /* XXX 3 bytes hole, try to pack */ atomic64_t picos_per_byte; /* 32 0 */ /* XXX 8 bytes hole, try to pack */ spinlock_t current_entry_lock; /* 40 0 */ /* XXX 8 bytes hole, try to pack */ struct sched_entry * current_entry; /* 48 8 */ struct sched_gate_list * oper_sched; /* 56 8 */ /* --- cacheline 1 boundary (64 bytes) --- */

Assessing the Risk of CVE-2022-48644

Access Complexity Graph

The exploitability of CVE-2022-48644 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).

Exploitability Analysis for CVE-2022-48644

No exploitability data is available for CVE-2022-48644.

Understanding AC and PR

A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.

Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.

Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.

CVSS Score Breakdown Chart

Above is the CVSS Sub-score Breakdown for CVE-2022-48644, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.

CIA Impact Analysis

Below is the Impact Analysis for CVE-2022-48644, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.

  • Confidentiality: None
    CVE-2022-48644 does not compromise confidentiality.
  • Integrity: None
    CVE-2022-48644 does not impact data integrity.
  • Availability: None
    CVE-2022-48644 does not affect system availability.

Exploit Prediction Scoring System (EPSS)

The EPSS score estimates the probability that this vulnerability will be exploited in the near future.

EPSS Score: 0.045% (probability of exploit)

EPSS Percentile: 18.4% (lower percentile = lower relative risk)
This vulnerability is less risky than approximately 81.6% of others.

CVE-2022-48644 References

External References

CWE Common Weakness Enumeration

Unknown

Protect Your Infrastructure against CVE-2022-48644: Combat Critical CVE Threats

Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.

Other 5 Recently Published CVEs Vulnerabilities

  • CVE-2025-31203 – An integer overflow was addressed with improved input validation. This issue is fixed in macOS Sequoia 15.4, tvOS 18.4, iPadOS 17.7.6, macOS Sonoma...
  • CVE-2025-31202 – A null pointer dereference was addressed with improved input validation. This issue is fixed in iOS 18.4 and iPadOS 18.4, macOS Sequoia 15.4, tvOS ...
  • CVE-2025-31197 – The issue was addressed with improved checks. This issue is fixed in macOS Sequoia 15.4, tvOS 18.4, macOS Ventura 13.7.5, iPadOS 17.7.6, macOS Sono...
  • CVE-2025-30445 – A type confusion issue was addressed with improved checks. This issue is fixed in macOS Sequoia 15.4, tvOS 18.4, macOS Ventura 13.7.5, iPadOS 17.7....
  • CVE-2025-24271 – An access issue was addressed with improved access restrictions. This issue is fixed in macOS Sequoia 15.4, tvOS 18.4, macOS Ventura 13.7.5, iPadOS...