CVE-2021-47275 Vulnerability Analysis & Exploit Details

CVE-2021-47275
Vulnerability Scoring

Analysis In Progress
Analysis In Progress

Attack Complexity Details

  • Attack Complexity:
    Attack Complexity Analysis In Progress
  • Attack Vector:
    Attack Vector Under Analysis
  • Privileges Required: None
    No authentication is required for exploitation.
  • Scope:
    Impact is confined to the initially vulnerable component.
  • User Interaction: None
    No user interaction is necessary for exploitation.

CVE-2021-47275 Details

Status: Awaiting Analysis

Last updated: 🕡 21 Nov 2024, 06:35 UTC
Originally published on: 🕒 21 May 2024, 15:15 UTC

Time between publication and last update: 183 days

CVSS Release:

CVE-2021-47275 Vulnerability Summary

CVE-2021-47275: In the Linux kernel, the following vulnerability has been resolved: bcache: avoid oversized read request in cache missing code path In the cache missing code path of cached device, if a proper location from the internal B+ tree is matched for a cache miss range, function cached_dev_cache_miss() will be called in cache_lookup_fn() in the following code block, [code block 1] 526 unsigned int sectors = KEY_INODE(k) == s->iop.inode 527 ? min_t(uint64_t, INT_MAX, 528 KEY_START(k) - bio->bi_iter.bi_sector) 529 : INT_MAX; 530 int ret = s->d->cache_miss(b, s, bio, sectors); Here s->d->cache_miss() is the call backfunction pointer initialized as cached_dev_cache_miss(), the last parameter 'sectors' is an important hint to calculate the size of read request to backing device of the missing cache data. Current calculation in above code block may generate oversized value of 'sectors', which consequently may trigger 2 different potential kernel panics by BUG() or BUG_ON() as listed below, 1) BUG_ON() inside bch_btree_insert_key(), [code block 2] 886 BUG_ON(b->ops->is_extents && !KEY_SIZE(k)); 2) BUG() inside biovec_slab(), [code block 3] 51 default: 52 BUG(); 53 return NULL; All the above panics are original from cached_dev_cache_miss() by the oversized parameter 'sectors'. Inside cached_dev_cache_miss(), parameter 'sectors' is used to calculate the size of data read from backing device for the cache missing. This size is stored in s->insert_bio_sectors by the following lines of code, [code block 4] 909 s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada); Then the actual key inserting to the internal B+ tree is generated and stored in s->iop.replace_key by the following lines of code, [code block 5] 911 s->iop.replace_key = KEY(s->iop.inode, 912 bio->bi_iter.bi_sector + s->insert_bio_sectors, 913 s->insert_bio_sectors); The oversized parameter 'sectors' may trigger panic 1) by BUG_ON() from the above code block. And the bio sending to backing device for the missing data is allocated with hint from s->insert_bio_sectors by the following lines of code, [code block 6] 926 cache_bio = bio_alloc_bioset(GFP_NOWAIT, 927 DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS), 928 &dc->disk.bio_split); The oversized parameter 'sectors' may trigger panic 2) by BUG() from the agove code block. Now let me explain how the panics happen with the oversized 'sectors'. In code block 5, replace_key is generated by macro KEY(). From the definition of macro KEY(), [code block 7] 71 #define KEY(inode, offset, size) \ 72 ((struct bkey) { \ 73 .high = (1ULL << 63) | ((__u64) (size) << 20) | (inode), \ 74 .low = (offset) \ 75 }) Here 'size' is 16bits width embedded in 64bits member 'high' of struct bkey. But in code block 1, if "KEY_START(k) - bio->bi_iter.bi_sector" is very probably to be larger than (1<<16) - 1, which makes the bkey size calculation in code block 5 is overflowed. In one bug report the value of parameter 'sectors' is 131072 (= 1 << 17), the overflowed 'sectors' results the overflowed s->insert_bio_sectors in code block 4, then makes size field of s->iop.replace_key to be 0 in code block 5. Then the 0- sized s->iop.replace_key is inserted into the internal B+ tree as cache missing check key (a special key to detect and avoid a racing between normal write request and cache missing read request) as, [code block 8] 915 ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key); Then the 0-sized s->iop.replace_key as 3rd parameter triggers the bkey size check BUG_ON() in code block 2, and causes the kernel panic 1). Another ke ---truncated---

Assessing the Risk of CVE-2021-47275

Access Complexity Graph

The exploitability of CVE-2021-47275 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).

Exploitability Analysis for CVE-2021-47275

No exploitability data is available for CVE-2021-47275.

Understanding AC and PR

A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.

Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.

Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.

CVSS Score Breakdown Chart

Above is the CVSS Sub-score Breakdown for CVE-2021-47275, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.

CIA Impact Analysis

Below is the Impact Analysis for CVE-2021-47275, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.

  • Confidentiality: None
    CVE-2021-47275 does not compromise confidentiality.
  • Integrity: None
    CVE-2021-47275 does not impact data integrity.
  • Availability: None
    CVE-2021-47275 does not affect system availability.

Exploit Prediction Scoring System (EPSS)

The EPSS score estimates the probability that this vulnerability will be exploited in the near future.

EPSS Score: 0.043% (probability of exploit)

EPSS Percentile: 11.87% (lower percentile = lower relative risk)
This vulnerability is less risky than approximately 88.13% of others.

CVE-2021-47275 References

External References

CWE Common Weakness Enumeration

Unknown

Protect Your Infrastructure against CVE-2021-47275: Combat Critical CVE Threats

Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.

Other 5 Recently Published CVEs Vulnerabilities

  • CVE-2024-43107 – Improper Certificate Validation (CWE-295) in the Gallagher Milestone Integration Plugin (MIP) permits unauthenticated messages (e.g. alarm events) ...
  • CVE-2024-41724 – Improper Certificate Validation (CWE-295) in the Gallagher Command Centre SALTO integration allowed an attacker to spoof the SALTO server. Thi...
  • CVE-2025-2133 – A vulnerability classified as problematic was found in ftcms 2.1. Affected by this vulnerability is an unknown functionality of the file /admin/ind...
  • CVE-2025-2132 – A vulnerability classified as critical has been found in ftcms 2.1. Affected is an unknown function of the file /admin/index.php/web/ajax_all_lists...
  • CVE-2025-2131 – A vulnerability was found in dayrui XunRuiCMS up to 4.6.3. It has been rated as problematic. This issue affects some unknown processing of the comp...