CVE-2021-37666 Vulnerability Analysis & Exploit Details

CVE-2021-37666
Vulnerability Scoring

7.8
/10
Very High Risk

Highly exploitable, CVE-2021-37666 poses a critical security risk that could lead to severe breaches.

Attack Complexity Details

  • Attack Complexity: Low
    Exploits can be performed without significant complexity or special conditions.
  • Attack Vector: Local
    Vulnerability requires local system access.
  • Privileges Required: Low
    Some privileges are necessary to exploit the vulnerability.
  • Scope: Unchanged
    Exploit remains within the originally vulnerable component.
  • User Interaction: None
    No user interaction is necessary for exploitation.

CVE-2021-37666 Details

Status: Modified

Last updated: 🕕 21 Nov 2024, 06:15 UTC
Originally published on: 🕙 12 Aug 2021, 22:15 UTC

Time between publication and last update: 1196 days

CVSS Release: version 3

CVSS3 Source

security-advisories@github.com

CVSS3 Type

Secondary

CVSS3 Vector

CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H

CVE-2021-37666 Vulnerability Summary

CVE-2021-37666: TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in `tf.raw_ops.RaggedTensorToVariant`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/ragged_tensor_to_variant_op.cc#L129) has an incomplete validation of the splits values, missing the case when the argument would be empty. We have patched the issue in GitHub commit be7a4de6adfbd303ce08be4332554dff70362612. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.

Assessing the Risk of CVE-2021-37666

Access Complexity Graph

The exploitability of CVE-2021-37666 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).

Exploitability Analysis for CVE-2021-37666

CVE-2021-37666 presents an accessible attack vector with minimal effort required. Restricting access controls and implementing security updates are critical to reducing exploitation risks.

Understanding AC and PR

A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.

Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.

Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.

CVSS Score Breakdown Chart

Above is the CVSS Sub-score Breakdown for CVE-2021-37666, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.

CIA Impact Analysis

Below is the Impact Analysis for CVE-2021-37666, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.

  • Confidentiality: High
    Exploiting CVE-2021-37666 can result in unauthorized access to sensitive data, severely compromising data privacy.
  • Integrity: High
    CVE-2021-37666 could allow unauthorized modifications to data, potentially affecting system reliability and trust.
  • Availability: High
    CVE-2021-37666 can disrupt system operations, potentially causing complete denial of service (DoS).

Exploit Prediction Scoring System (EPSS)

The EPSS score estimates the probability that this vulnerability will be exploited in the near future.

EPSS Score: 0.044% (probability of exploit)

EPSS Percentile: 15.33% (lower percentile = lower relative risk)
This vulnerability is less risky than approximately 84.67% of others.

CVE-2021-37666 References

External References

CWE Common Weakness Enumeration

CWE-824

Vulnerable Configurations

  • cpe:2.3:a:google:tensorflow:2.3.0:-:*:*:*:*:*:*
    cpe:2.3:a:google:tensorflow:2.3.0:-:*:*:*:*:*:*
  • cpe:2.3:a:google:tensorflow:2.3.0:-:*:*:-:*:*:*
    cpe:2.3:a:google:tensorflow:2.3.0:-:*:*:-:*:*:*
  • cpe:2.3:a:google:tensorflow:2.3.0:-:*:*:lite:*:*:*
    cpe:2.3:a:google:tensorflow:2.3.0:-:*:*:lite:*:*:*
  • cpe:2.3:a:google:tensorflow:2.3.0:rc0:*:*:*:*:*:*
    cpe:2.3:a:google:tensorflow:2.3.0:rc0:*:*:*:*:*:*
  • cpe:2.3:a:google:tensorflow:2.3.0:rc0:*:*:-:*:*:*
    cpe:2.3:a:google:tensorflow:2.3.0:rc0:*:*:-:*:*:*
  • cpe:2.3:a:google:tensorflow:2.3.0:rc0:*:*:lite:*:*:*
    cpe:2.3:a:google:tensorflow:2.3.0:rc0:*:*:lite:*:*:*
  • cpe:2.3:a:google:tensorflow:2.3.0:rc1:*:*:*:*:*:*
    cpe:2.3:a:google:tensorflow:2.3.0:rc1:*:*:*:*:*:*
  • cpe:2.3:a:google:tensorflow:2.3.0:rc1:*:*:-:*:*:*
    cpe:2.3:a:google:tensorflow:2.3.0:rc1:*:*:-:*:*:*
  • cpe:2.3:a:google:tensorflow:2.3.0:rc1:*:*:lite:*:*:*
    cpe:2.3:a:google:tensorflow:2.3.0:rc1:*:*:lite:*:*:*
  • cpe:2.3:a:google:tensorflow:2.3.0:rc2:*:*:*:*:*:*
    cpe:2.3:a:google:tensorflow:2.3.0:rc2:*:*:*:*:*:*
  • cpe:2.3:a:google:tensorflow:2.3.0:rc2:*:*:-:*:*:*
    cpe:2.3:a:google:tensorflow:2.3.0:rc2:*:*:-:*:*:*
  • cpe:2.3:a:google:tensorflow:2.3.0:rc2:*:*:lite:*:*:*
    cpe:2.3:a:google:tensorflow:2.3.0:rc2:*:*:lite:*:*:*
  • cpe:2.3:a:google:tensorflow:2.3.1:*:*:*:*:*:*:*
    cpe:2.3:a:google:tensorflow:2.3.1:*:*:*:*:*:*:*
  • cpe:2.3:a:google:tensorflow:2.3.1:*:*:*:-:*:*:*
    cpe:2.3:a:google:tensorflow:2.3.1:*:*:*:-:*:*:*
  • cpe:2.3:a:google:tensorflow:2.3.1:*:*:*:lite:*:*:*
    cpe:2.3:a:google:tensorflow:2.3.1:*:*:*:lite:*:*:*
  • cpe:2.3:a:google:tensorflow:2.3.2:*:*:*:*:*:*:*
    cpe:2.3:a:google:tensorflow:2.3.2:*:*:*:*:*:*:*
  • cpe:2.3:a:google:tensorflow:2.3.3:*:*:*:*:*:*:*
    cpe:2.3:a:google:tensorflow:2.3.3:*:*:*:*:*:*:*
  • cpe:2.3:a:google:tensorflow:2.4.0:-:*:*:*:*:*:*
    cpe:2.3:a:google:tensorflow:2.4.0:-:*:*:*:*:*:*
  • cpe:2.3:a:google:tensorflow:2.4.0:-:*:*:-:*:*:*
    cpe:2.3:a:google:tensorflow:2.4.0:-:*:*:-:*:*:*
  • cpe:2.3:a:google:tensorflow:2.4.0:rc0:*:*:*:*:*:*
    cpe:2.3:a:google:tensorflow:2.4.0:rc0:*:*:*:*:*:*
  • cpe:2.3:a:google:tensorflow:2.4.0:rc0:*:*:-:*:*:*
    cpe:2.3:a:google:tensorflow:2.4.0:rc0:*:*:-:*:*:*
  • cpe:2.3:a:google:tensorflow:2.4.0:rc0:*:*:lite:*:*:*
    cpe:2.3:a:google:tensorflow:2.4.0:rc0:*:*:lite:*:*:*
  • cpe:2.3:a:google:tensorflow:2.4.0:rc1:*:*:*:*:*:*
    cpe:2.3:a:google:tensorflow:2.4.0:rc1:*:*:*:*:*:*
  • cpe:2.3:a:google:tensorflow:2.4.0:rc1:*:*:-:*:*:*
    cpe:2.3:a:google:tensorflow:2.4.0:rc1:*:*:-:*:*:*
  • cpe:2.3:a:google:tensorflow:2.4.0:rc1:*:*:lite:*:*:*
    cpe:2.3:a:google:tensorflow:2.4.0:rc1:*:*:lite:*:*:*
  • cpe:2.3:a:google:tensorflow:2.4.0:rc2:*:*:*:*:*:*
    cpe:2.3:a:google:tensorflow:2.4.0:rc2:*:*:*:*:*:*
  • cpe:2.3:a:google:tensorflow:2.4.0:rc2:*:*:-:*:*:*
    cpe:2.3:a:google:tensorflow:2.4.0:rc2:*:*:-:*:*:*
  • cpe:2.3:a:google:tensorflow:2.4.0:rc2:*:*:lite:*:*:*
    cpe:2.3:a:google:tensorflow:2.4.0:rc2:*:*:lite:*:*:*
  • cpe:2.3:a:google:tensorflow:2.4.0:rc3:*:*:*:*:*:*
    cpe:2.3:a:google:tensorflow:2.4.0:rc3:*:*:*:*:*:*
  • cpe:2.3:a:google:tensorflow:2.4.0:rc3:*:*:-:*:*:*
    cpe:2.3:a:google:tensorflow:2.4.0:rc3:*:*:-:*:*:*
  • cpe:2.3:a:google:tensorflow:2.4.0:rc3:*:*:lite:*:*:*
    cpe:2.3:a:google:tensorflow:2.4.0:rc3:*:*:lite:*:*:*
  • cpe:2.3:a:google:tensorflow:2.4.0:rc4:*:*:*:*:*:*
    cpe:2.3:a:google:tensorflow:2.4.0:rc4:*:*:*:*:*:*
  • cpe:2.3:a:google:tensorflow:2.4.0:rc4:*:*:-:*:*:*
    cpe:2.3:a:google:tensorflow:2.4.0:rc4:*:*:-:*:*:*
  • cpe:2.3:a:google:tensorflow:2.4.1:*:*:*:*:*:*:*
    cpe:2.3:a:google:tensorflow:2.4.1:*:*:*:*:*:*:*
  • cpe:2.3:a:google:tensorflow:2.4.2:*:*:*:*:*:*:*
    cpe:2.3:a:google:tensorflow:2.4.2:*:*:*:*:*:*:*
  • cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*
    cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*
  • cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*
    cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*
  • cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*
    cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*
  • cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*
    cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*

Protect Your Infrastructure against CVE-2021-37666: Combat Critical CVE Threats

Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.

Other 5 Recently Published CVEs Vulnerabilities

  • CVE-2025-2130 – A vulnerability was found in OpenXE up to 1.12. It has been declared as problematic. This vulnerability affects unknown code of the component Ticke...
  • CVE-2025-26205 – Lua 5.4.7, when the debug library is used, has a out-of-bounds read and segmentation violation in mainpositionTV in ltable.c. NOTE: this is dispute...
  • CVE-2025-26204 – Lua 5.4.7, when the debug library is used, has a out-of-bounds read and segmentation violation in equalkey in ltable.c. NOTE: this is disputed beca...
  • CVE-2025-2129 – A vulnerability was found in Mage AI 0.9.75. It has been classified as problematic. This affects an unknown part. The manipulation leads to insecur...
  • CVE-2025-2127 – A vulnerability was found in JoomlaUX JUX Real Estate 3.4.0 on Joomla. It has been classified as problematic. Affected is an unknown function of th...