CVE-2021-37652
Vulnerability Scoring
Highly exploitable, CVE-2021-37652 poses a critical security risk that could lead to severe breaches.
Highly exploitable, CVE-2021-37652 poses a critical security risk that could lead to severe breaches.
Status: Modified
Last updated: 🕕 21 Nov 2024, 06:15 UTC
Originally published on: 🕙 12 Aug 2021, 22:15 UTC
Time between publication and last update: 1196 days
CVSS Release: version 3
security-advisories@github.com
Secondary
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H
CVE-2021-37652: TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation for `tf.raw_ops.BoostedTreesCreateEnsemble` can result in a use after free error if an attacker supplies specially crafted arguments. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/boosted_trees/resource_ops.cc#L55) uses a reference counted resource and decrements the refcount if the initialization fails, as it should. However, when the code was written, the resource was represented as a naked pointer but later refactoring has changed it to be a smart pointer. Thus, when the pointer leaves the scope, a subsequent `free`-ing of the resource occurs, but this fails to take into account that the refcount has already reached 0, thus the resource has been already freed. During this double-free process, members of the resource object are accessed for cleanup but they are invalid as the entire resource has been freed. We have patched the issue in GitHub commit 5ecec9c6fbdbc6be03295685190a45e7eee726ab. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
The exploitability of CVE-2021-37652 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).
CVE-2021-37652 presents an accessible attack vector with minimal effort required. Restricting access controls and implementing security updates are critical to reducing exploitation risks.
A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.
Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.
Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.
Above is the CVSS Sub-score Breakdown for CVE-2021-37652, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.
Below is the Impact Analysis for CVE-2021-37652, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.
The EPSS score estimates the probability that this vulnerability will be exploited in the near future.
EPSS Score: 0.044% (probability of exploit)
EPSS Percentile: 15.45%
(lower percentile = lower relative risk)
This vulnerability is less risky than approximately 84.55% of others.
Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.