CVE-2021-21293
Vulnerability Scoring
Highly exploitable, CVE-2021-21293 poses a critical security risk that could lead to severe breaches.
Highly exploitable, CVE-2021-21293 poses a critical security risk that could lead to severe breaches.
Status: Modified
Last updated: 🕠 21 Nov 2024, 05:47 UTC
Originally published on: 🕙 02 Feb 2021, 22:15 UTC
Time between publication and last update: 1387 days
CVSS Release: version 3
security-advisories@github.com
Secondary
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H
CVE-2021-21293: blaze is a Scala library for building asynchronous pipelines, with a focus on network IO. All servers running blaze-core before version 0.14.15 are affected by a vulnerability in which unbounded connection acceptance leads to file handle exhaustion. Blaze, accepts connections unconditionally on a dedicated thread pool. This has the net effect of amplifying degradation in services that are unable to handle their current request load, since incoming connections are still accepted and added to an unbounded queue. Each connection allocates a socket handle, which drains a scarce OS resource. This can also confound higher level circuit breakers which work based on detecting failed connections. The vast majority of affected users are using it as part of http4s-blaze-server <= 0.21.16. http4s provides a mechanism for limiting open connections, but is enforced inside the Blaze accept loop, after the connection is accepted and the socket opened. Thus, the limit only prevents the number of connections which can be simultaneously processed, not the number of connections which can be held open. The issue is fixed in version 0.14.15 for "NIO1SocketServerGroup". A "maxConnections" parameter is added, with a default value of 512. Concurrent connections beyond this limit are rejected. To run unbounded, which is not recommended, set a negative number. The "NIO2SocketServerGroup" has no such setting and is now deprecated. There are several possible workarounds described in the refrenced GitHub Advisory GHSA-xmw9-q7x9-j5qc.
The exploitability of CVE-2021-21293 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).
With low attack complexity and no required privileges, CVE-2021-21293 is an easy target for cybercriminals. Organizations should prioritize immediate mitigation measures to prevent unauthorized access and data breaches.
A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.
Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.
Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.
Above is the CVSS Sub-score Breakdown for CVE-2021-21293, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.
Below is the Impact Analysis for CVE-2021-21293, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.
The EPSS score estimates the probability that this vulnerability will be exploited in the near future.
EPSS Score: 0.196% (probability of exploit)
EPSS Percentile: 58.11%
(lower percentile = lower relative risk)
This vulnerability is less risky than approximately 41.89% of others.
Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.