CVE-2020-28877 Vulnerability Analysis & Exploit Details

Status: Analyzed - Last modified: 03 Dec 2020, 17:29 UTC Published: 20 Nov 2020, 16:15 UTC

CVE-2020-28877
Vulnerability Scoring

9.8
/10

Attack Complexity Details

  • Attack Complexity: Low Impact
  • Attack Vector: NETWORK
  • Privileges Required: None
  • Scope: UNCHANGED
  • User Interaction: NONE

CIA Impact Definition

  • Confidentiality: HIGH IMPACT
  • Integrity: HIGH IMPACT
  • Availability: HIGH IMPACT

CVE-2020-28877 Vulnerability Summary

Buffer overflow in in the copy_msg_element function for the devDiscoverHandle server in the TP-Link WR and WDR series, including WDR7400, WDR7500, WDR7660, WDR7800, WDR8400, WDR8500, WDR8600, WDR8620, WDR8640, WDR8660, WR880N, WR886N, WR890N, WR890N, WR882N, and WR708N.

Access Complexity Graph

Above is the Access Complexity Graph for CVE-2020-28877. It helps visualize the difficulty level and privilege requirements needed to exploit this vulnerability, providing a quick assessment of its exploitation feasibility.

CVSS Score Breakdown Chart

Above is the CVSS Sub-score Breakdown for CVE-2020-28877, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.

Impact Analysis

Below is the Impact Analysis for CVE-2020-28877, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.

Exploit Prediction Scoring System (EPSS)

The EPSS score estimates the probability that this vulnerability will be exploited in the near future.

EPSS Score: 0.221% (probability of exploit)

EPSS Percentile: 60.4% (lower percentile = lower relative risk)
This vulnerability is less risky than approximately 39.6% of others.

CVE-2020-28877 Detailed Information and External References

References

CWE

CWE-120

CAPEC

  • Buffer Overflow via Environment Variables CAPEC-10 This attack pattern involves causing a buffer overflow through manipulation of environment variables. Once the adversary finds that they can modify an environment variable, they may try to overflow associated buffers. This attack leverages implicit trust often placed in environment variables.
  • Overflow Buffers CAPEC-100 Buffer Overflow attacks target improper or missing bounds checking on buffer operations, typically triggered by input injected by an adversary. As a consequence, an adversary is able to write past the boundaries of allocated buffer regions in memory, causing a program crash or potentially redirection of execution as per the adversaries' choice.
  • Client-side Injection-induced Buffer Overflow CAPEC-14 This type of attack exploits a buffer overflow vulnerability in targeted client software through injection of malicious content from a custom-built hostile service. This hostile service is created to deliver the correct content to the client software. For example, if the client-side application is a browser, the service will host a webpage that the browser loads.
  • Filter Failure through Buffer Overflow CAPEC-24 In this attack, the idea is to cause an active filter to fail by causing an oversized transaction. An attacker may try to feed overly long input strings to the program in an attempt to overwhelm the filter (by causing a buffer overflow) and hoping that the filter does not fail securely (i.e. the user input is let into the system unfiltered).
  • MIME Conversion CAPEC-42 An attacker exploits a weakness in the MIME conversion routine to cause a buffer overflow and gain control over the mail server machine. The MIME system is designed to allow various different information formats to be interpreted and sent via e-mail. Attack points exist when data are converted to MIME compatible format and back.
  • Overflow Binary Resource File CAPEC-44 An attack of this type exploits a buffer overflow vulnerability in the handling of binary resources. Binary resources may include music files like MP3, image files like JPEG files, and any other binary file. These attacks may pass unnoticed to the client machine through normal usage of files, such as a browser loading a seemingly innocent JPEG file. This can allow the adversary access to the execution stack and execute arbitrary code in the target process.
  • Buffer Overflow via Symbolic Links CAPEC-45 This type of attack leverages the use of symbolic links to cause buffer overflows. An adversary can try to create or manipulate a symbolic link file such that its contents result in out of bounds data. When the target software processes the symbolic link file, it could potentially overflow internal buffers with insufficient bounds checking.
  • Overflow Variables and Tags CAPEC-46 This type of attack leverages the use of tags or variables from a formatted configuration data to cause buffer overflow. The adversary crafts a malicious HTML page or configuration file that includes oversized strings, thus causing an overflow.
  • Buffer Overflow via Parameter Expansion CAPEC-47 In this attack, the target software is given input that the adversary knows will be modified and expanded in size during processing. This attack relies on the target software failing to anticipate that the expanded data may exceed some internal limit, thereby creating a buffer overflow.
  • String Format Overflow in syslog() CAPEC-67 This attack targets applications and software that uses the syslog() function insecurely. If an application does not explicitely use a format string parameter in a call to syslog(), user input can be placed in the format string parameter leading to a format string injection attack. Adversaries can then inject malicious format string commands into the function call leading to a buffer overflow. There are many reported software vulnerabilities with the root cause being a misuse of the syslog() function.
  • Buffer Overflow in an API Call CAPEC-8 This attack targets libraries or shared code modules which are vulnerable to buffer overflow attacks. An adversary who has knowledge of known vulnerable libraries or shared code can easily target software that makes use of these libraries. All clients that make use of the code library thus become vulnerable by association. This has a very broad effect on security across a system, usually affecting more than one software process.
  • Buffer Overflow in Local Command-Line Utilities CAPEC-9 This attack targets command-line utilities available in a number of shells. An adversary can leverage a vulnerability found in a command-line utility to escalate privilege to root.
  • Forced Integer Overflow CAPEC-92 This attack forces an integer variable to go out of range. The integer variable is often used as an offset such as size of memory allocation or similarly. The attacker would typically control the value of such variable and try to get it out of range. For instance the integer in question is incremented past the maximum possible value, it may wrap to become a very small, or negative number, therefore providing a very incorrect value which can lead to unexpected behavior. At worst the attacker can execute arbitrary code.

Vulnerable Configurations

  • cpe:2.3:o:tp-link:wdr7400_firmware:-:*:*:*:*:*:*:*
    cpe:2.3:o:tp-link:wdr7400_firmware:-:*:*:*:*:*:*:*
  • cpe:2.3:h:tp-link:wdr7400:-:*:*:*:*:*:*:*
    cpe:2.3:h:tp-link:wdr7400:-:*:*:*:*:*:*:*
  • cpe:2.3:o:tp-link:wdr7500_firmware:-:*:*:*:*:*:*:*
    cpe:2.3:o:tp-link:wdr7500_firmware:-:*:*:*:*:*:*:*
  • cpe:2.3:h:tp-link:wdr7500:-:*:*:*:*:*:*:*
    cpe:2.3:h:tp-link:wdr7500:-:*:*:*:*:*:*:*
  • cpe:2.3:o:tp-link:wdr7660_firmware:-:*:*:*:*:*:*:*
    cpe:2.3:o:tp-link:wdr7660_firmware:-:*:*:*:*:*:*:*
  • cpe:2.3:h:tp-link:wdr7660:-:*:*:*:*:*:*:*
    cpe:2.3:h:tp-link:wdr7660:-:*:*:*:*:*:*:*
  • cpe:2.3:o:tp-link:wdr7800_firmware:-:*:*:*:*:*:*:*
    cpe:2.3:o:tp-link:wdr7800_firmware:-:*:*:*:*:*:*:*
  • cpe:2.3:h:tp-link:wdr7800:-:*:*:*:*:*:*:*
    cpe:2.3:h:tp-link:wdr7800:-:*:*:*:*:*:*:*
  • cpe:2.3:o:tp-link:wdr8400_firmware:-:*:*:*:*:*:*:*
    cpe:2.3:o:tp-link:wdr8400_firmware:-:*:*:*:*:*:*:*
  • cpe:2.3:h:tp-link:wdr8400:-:*:*:*:*:*:*:*
    cpe:2.3:h:tp-link:wdr8400:-:*:*:*:*:*:*:*
  • cpe:2.3:o:tp-link:wdr8500_firmware:-:*:*:*:*:*:*:*
    cpe:2.3:o:tp-link:wdr8500_firmware:-:*:*:*:*:*:*:*
  • cpe:2.3:h:tp-link:wdr8500:-:*:*:*:*:*:*:*
    cpe:2.3:h:tp-link:wdr8500:-:*:*:*:*:*:*:*
  • cpe:2.3:o:tp-link:wdr8600_firmware:-:*:*:*:*:*:*:*
    cpe:2.3:o:tp-link:wdr8600_firmware:-:*:*:*:*:*:*:*
  • cpe:2.3:h:tp-link:wdr8600:-:*:*:*:*:*:*:*
    cpe:2.3:h:tp-link:wdr8600:-:*:*:*:*:*:*:*
  • cpe:2.3:o:tp-link:wdr8620_firmware:-:*:*:*:*:*:*:*
    cpe:2.3:o:tp-link:wdr8620_firmware:-:*:*:*:*:*:*:*
  • cpe:2.3:h:tp-link:wdr8620:-:*:*:*:*:*:*:*
    cpe:2.3:h:tp-link:wdr8620:-:*:*:*:*:*:*:*
  • cpe:2.3:o:tp-link:wdr8640_firmware:-:*:*:*:*:*:*:*
    cpe:2.3:o:tp-link:wdr8640_firmware:-:*:*:*:*:*:*:*
  • cpe:2.3:h:tp-link:wdr8640:-:*:*:*:*:*:*:*
    cpe:2.3:h:tp-link:wdr8640:-:*:*:*:*:*:*:*
  • cpe:2.3:o:tp-link:wdr8660_firmware:-:*:*:*:*:*:*:*
    cpe:2.3:o:tp-link:wdr8660_firmware:-:*:*:*:*:*:*:*
  • cpe:2.3:h:tp-link:wdr8660:-:*:*:*:*:*:*:*
    cpe:2.3:h:tp-link:wdr8660:-:*:*:*:*:*:*:*
  • cpe:2.3:o:tp-link:wr880n_firmware:-:*:*:*:*:*:*:*
    cpe:2.3:o:tp-link:wr880n_firmware:-:*:*:*:*:*:*:*
  • cpe:2.3:h:tp-link:wr880n:-:*:*:*:*:*:*:*
    cpe:2.3:h:tp-link:wr880n:-:*:*:*:*:*:*:*
  • cpe:2.3:o:tp-link:wr886n_firmware:-:*:*:*:*:*:*:*
    cpe:2.3:o:tp-link:wr886n_firmware:-:*:*:*:*:*:*:*
  • cpe:2.3:h:tp-link:wr886n:-:*:*:*:*:*:*:*
    cpe:2.3:h:tp-link:wr886n:-:*:*:*:*:*:*:*
  • cpe:2.3:o:tp-link:wr890n_firmware:-:*:*:*:*:*:*:*
    cpe:2.3:o:tp-link:wr890n_firmware:-:*:*:*:*:*:*:*
  • cpe:2.3:h:tp-link:wr890n:-:*:*:*:*:*:*:*
    cpe:2.3:h:tp-link:wr890n:-:*:*:*:*:*:*:*
  • cpe:2.3:o:tp-link:wr882n_firmware:-:*:*:*:*:*:*:*
    cpe:2.3:o:tp-link:wr882n_firmware:-:*:*:*:*:*:*:*
  • cpe:2.3:h:tp-link:wr882n:-:*:*:*:*:*:*:*
    cpe:2.3:h:tp-link:wr882n:-:*:*:*:*:*:*:*
  • cpe:2.3:o:tp-link:wr708n_firmware:-:*:*:*:*:*:*:*
    cpe:2.3:o:tp-link:wr708n_firmware:-:*:*:*:*:*:*:*
  • cpe:2.3:h:tp-link:wr708n:-:*:*:*:*:*:*:*
    cpe:2.3:h:tp-link:wr708n:-:*:*:*:*:*:*:*

CVSS3 Source

nvd@nist.gov

CVSS3 Type

Primary

CVSS3 Vector

CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

Protect Your Infrastructure: Combat Critical CVE Threats

Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.

Other Recently Published CVEs

  • CVE-2024-57964 – Insecure Loading of Dynamic Link Libraries have been discovered in HVAC Energy Saving Program, which could allow local attackers to potentially dis...
  • CVE-2024-57963 – Insecure Loading of Dynamic Link Libraries have been discovered in USB-CONVERTERCABLE DRIVER, which could allow local attackers to potentially disc...
  • CVE-2024-13523 – The MemorialDay plugin for WordPress is vulnerable to Cross-Site Request Forgery in all versions up to, and including, 1.0.4. This is due to missin...
  • CVE-2024-45320 – Out-of-bounds write vulnerability exists in DocuPrint CP225w 01.22.01 and earlier, DocuPrint CP228w 01.22.01 and earlier, DocuPrint CM225fw 01.10.0...
  • CVE-2024-13556 – The Affiliate Links: WordPress Plugin for Link Cloaking and Link Management plugin for WordPress is vulnerable to PHP Object Injection in all versi...
  • CVE-2024-13438 – The SpeedSize Image & Video AI-Optimizer plugin for WordPress is vulnerable to Cross-Site Request Forgery in all versions up to, and including, 1.5...
  • CVE-2024-13315 – The Shopwarden – Automated WooCommerce monitoring & testing plugin for WordPress is vulnerable to Cross-Site Request Forgery in all versions up to,...
  • CVE-2025-0805 – The Mortgage Calculator / Loan Calculator plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin's 'mlcalc' shortcode in ...
  • CVE-2025-0796 – The Mortgage Lead Capture System plugin for WordPress is vulnerable to Cross-Site Request Forgery in all versions up to, and including, 8.2.10. Thi...
  • CVE-2024-13852 – The Option Editor plugin for WordPress is vulnerable to Cross-Site Request Forgery in version 1.0. This is due to missing nonce validation on the p...