CVE-2020-15214: Vulnerability Analysis & Exploit Details

Status: Analyzed - Last modified: 17-08-2021 Published: 25-09-2020

CVE-2020-15214
Vulnerability Scoring

8.1
/10

Attack Complexity Details

  • Attack Complexity: HIGH IMPACT
  • Attack Vector: NETWORK
  • Privileges Required: None
  • Scope: CHANGED
  • User Interaction: NONE

CIA Impact Definition

  • Confidentiality: Low Impact
  • Integrity: Low Impact
  • Availability: HIGH IMPACT

CVE-2020-15214 Vulnerability Summary

In TensorFlow Lite before versions 2.2.1 and 2.3.1, models using segment sum can trigger a write out bounds / segmentation fault if the segment ids are not sorted. Code assumes that the segment ids are in increasing order, using the last element of the tensor holding them to determine the dimensionality of output tensor. This results in allocating insufficient memory for the output tensor and in a write outside the bounds of the output array. This usually results in a segmentation fault, but depending on runtime conditions it can provide for a write gadget to be used in future memory corruption-based exploits. The issue is patched in commit 204945b19e44b57906c9344c0d00120eeeae178a and is released in TensorFlow versions 2.2.1, or 2.3.1. A potential workaround would be to add a custom `Verifier` to the model loading code to ensure that the segment ids are sorted, although this only handles the case when the segment ids are stored statically in the model. A similar validation could be done if the segment ids are generated at runtime between inference steps. If the segment ids are generated as outputs of a tensor during inference steps, then there are no possible workaround and users are advised to upgrade to patched code.

Access Complexity Graph for CVE-2020-15214

Impact Analysis for CVE-2020-15214

CVE-2020-15214: Detailed Information and External References

EPSS

0.00311

EPSS %

0.69990

References

0.00311

CWE

CWE-787

Vulnerable Configurations

  • cpe:2.3:a:google:tensorflow:2.2.0:-:*:*:*:*:*:*
    cpe:2.3:a:google:tensorflow:2.2.0:-:*:*:*:*:*:*
  • cpe:2.3:a:google:tensorflow:2.2.0:-:*:*:-:*:*:*
    cpe:2.3:a:google:tensorflow:2.2.0:-:*:*:-:*:*:*
  • cpe:2.3:a:google:tensorflow:2.2.0:-:*:*:lite:*:*:*
    cpe:2.3:a:google:tensorflow:2.2.0:-:*:*:lite:*:*:*
  • cpe:2.3:a:google:tensorflow:2.2.0:rc0:*:*:*:*:*:*
    cpe:2.3:a:google:tensorflow:2.2.0:rc0:*:*:*:*:*:*
  • cpe:2.3:a:google:tensorflow:2.2.0:rc0:*:*:-:*:*:*
    cpe:2.3:a:google:tensorflow:2.2.0:rc0:*:*:-:*:*:*
  • cpe:2.3:a:google:tensorflow:2.2.0:rc0:*:*:lite:*:*:*
    cpe:2.3:a:google:tensorflow:2.2.0:rc0:*:*:lite:*:*:*
  • cpe:2.3:a:google:tensorflow:2.2.0:rc1:*:*:*:*:*:*
    cpe:2.3:a:google:tensorflow:2.2.0:rc1:*:*:*:*:*:*
  • cpe:2.3:a:google:tensorflow:2.2.0:rc1:*:*:-:*:*:*
    cpe:2.3:a:google:tensorflow:2.2.0:rc1:*:*:-:*:*:*
  • cpe:2.3:a:google:tensorflow:2.2.0:rc1:*:*:lite:*:*:*
    cpe:2.3:a:google:tensorflow:2.2.0:rc1:*:*:lite:*:*:*
  • cpe:2.3:a:google:tensorflow:2.2.0:rc2:*:*:*:*:*:*
    cpe:2.3:a:google:tensorflow:2.2.0:rc2:*:*:*:*:*:*
  • cpe:2.3:a:google:tensorflow:2.2.0:rc2:*:*:-:*:*:*
    cpe:2.3:a:google:tensorflow:2.2.0:rc2:*:*:-:*:*:*
  • cpe:2.3:a:google:tensorflow:2.2.0:rc2:*:*:lite:*:*:*
    cpe:2.3:a:google:tensorflow:2.2.0:rc2:*:*:lite:*:*:*
  • cpe:2.3:a:google:tensorflow:2.2.0:rc3:*:*:*:*:*:*
    cpe:2.3:a:google:tensorflow:2.2.0:rc3:*:*:*:*:*:*
  • cpe:2.3:a:google:tensorflow:2.2.0:rc3:*:*:-:*:*:*
    cpe:2.3:a:google:tensorflow:2.2.0:rc3:*:*:-:*:*:*
  • cpe:2.3:a:google:tensorflow:2.2.0:rc3:*:*:lite:*:*:*
    cpe:2.3:a:google:tensorflow:2.2.0:rc3:*:*:lite:*:*:*
  • cpe:2.3:a:google:tensorflow:2.2.0:rc4:*:*:*:*:*:*
    cpe:2.3:a:google:tensorflow:2.2.0:rc4:*:*:*:*:*:*
  • cpe:2.3:a:google:tensorflow:2.2.0:rc4:*:*:-:*:*:*
    cpe:2.3:a:google:tensorflow:2.2.0:rc4:*:*:-:*:*:*
  • cpe:2.3:a:google:tensorflow:2.2.0:rc4:*:*:lite:*:*:*
    cpe:2.3:a:google:tensorflow:2.2.0:rc4:*:*:lite:*:*:*
  • cpe:2.3:a:google:tensorflow:2.3.0:-:*:*:*:*:*:*
    cpe:2.3:a:google:tensorflow:2.3.0:-:*:*:*:*:*:*
  • cpe:2.3:a:google:tensorflow:2.3.0:-:*:*:-:*:*:*
    cpe:2.3:a:google:tensorflow:2.3.0:-:*:*:-:*:*:*
  • cpe:2.3:a:google:tensorflow:2.3.0:-:*:*:lite:*:*:*
    cpe:2.3:a:google:tensorflow:2.3.0:-:*:*:lite:*:*:*
  • cpe:2.3:a:google:tensorflow:2.3.0:rc0:*:*:*:*:*:*
    cpe:2.3:a:google:tensorflow:2.3.0:rc0:*:*:*:*:*:*
  • cpe:2.3:a:google:tensorflow:2.3.0:rc0:*:*:-:*:*:*
    cpe:2.3:a:google:tensorflow:2.3.0:rc0:*:*:-:*:*:*
  • cpe:2.3:a:google:tensorflow:2.3.0:rc0:*:*:lite:*:*:*
    cpe:2.3:a:google:tensorflow:2.3.0:rc0:*:*:lite:*:*:*
  • cpe:2.3:a:google:tensorflow:2.3.0:rc1:*:*:*:*:*:*
    cpe:2.3:a:google:tensorflow:2.3.0:rc1:*:*:*:*:*:*
  • cpe:2.3:a:google:tensorflow:2.3.0:rc1:*:*:-:*:*:*
    cpe:2.3:a:google:tensorflow:2.3.0:rc1:*:*:-:*:*:*
  • cpe:2.3:a:google:tensorflow:2.3.0:rc1:*:*:lite:*:*:*
    cpe:2.3:a:google:tensorflow:2.3.0:rc1:*:*:lite:*:*:*
  • cpe:2.3:a:google:tensorflow:2.3.0:rc2:*:*:*:*:*:*
    cpe:2.3:a:google:tensorflow:2.3.0:rc2:*:*:*:*:*:*
  • cpe:2.3:a:google:tensorflow:2.3.0:rc2:*:*:-:*:*:*
    cpe:2.3:a:google:tensorflow:2.3.0:rc2:*:*:-:*:*:*
  • cpe:2.3:a:google:tensorflow:2.3.0:rc2:*:*:lite:*:*:*
    cpe:2.3:a:google:tensorflow:2.3.0:rc2:*:*:lite:*:*:*

CVSS3 Source

nvd@nist.gov

CVSS3 Type

Primary

CVSS3 Vector

CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:C/C:L/I:L/A:H

Protect Your Infrastructure: Combat Critical CVE Threats

Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.

Recently Published CVEs