CVE-2020-12887
Vulnerability Scoring
Highly exploitable, CVE-2020-12887 poses a critical security risk that could lead to severe breaches.
Highly exploitable, CVE-2020-12887 poses a critical security risk that could lead to severe breaches.
Status: Analyzed
Last updated: 🕦 21 Jul 2021, 11:39 UTC
Originally published on: 🕖 18 Jun 2020, 19:15 UTC
Time between publication and last update: 397 days
CVSS Release: version 3
nvd@nist.gov
Primary
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H
CVE-2020-12887: Memory leaks were discovered in the CoAP library in Arm Mbed OS 5.15.3 when using the Arm mbed-coap library 5.1.5. The CoAP parser is responsible for parsing received CoAP packets. The function sn_coap_parser_options_parse() parses the CoAP option number field of all options present in the input packet. Each option number is calculated as a sum of the previous option number and a delta of the current option. The delta and the previous option number are expressed as unsigned 16-bit integers. Due to lack of overflow detection, it is possible to craft a packet that wraps the option number around and results in the same option number being processed again in a single packet. Certain options allocate memory by calling a memory allocation function. In the cases of COAP_OPTION_URI_QUERY, COAP_OPTION_URI_PATH, COAP_OPTION_LOCATION_QUERY, and COAP_OPTION_ETAG, there is no check on whether memory has already been allocated, which in conjunction with the option number integer overflow may lead to multiple assignments of allocated memory to a single pointer. This has been demonstrated to lead to memory leak by buffer orphaning. As a result, the memory is never freed.
The exploitability of CVE-2020-12887 depends on two key factors: attack complexity (the level of effort required to execute an exploit) and privileges required (the access level an attacker needs).
With low attack complexity and no required privileges, CVE-2020-12887 is an easy target for cybercriminals. Organizations should prioritize immediate mitigation measures to prevent unauthorized access and data breaches.
A lower complexity and fewer privilege requirements make exploitation easier. Security teams should evaluate these aspects to determine the urgency of mitigation strategies, such as patch management and access control policies.
Attack Complexity (AC) measures the difficulty in executing an exploit. A high AC means that specific conditions must be met, making an attack more challenging, while a low AC means the vulnerability can be exploited with minimal effort.
Privileges Required (PR) determine the level of system access necessary for an attack. Vulnerabilities requiring no privileges are more accessible to attackers, whereas high privilege requirements limit exploitation to authorized users with elevated access.
Above is the CVSS Sub-score Breakdown for CVE-2020-12887, illustrating how Base, Impact, and Exploitability factors combine to form the overall severity rating. A higher sub-score typically indicates a more severe or easier-to-exploit vulnerability.
Below is the Impact Analysis for CVE-2020-12887, showing how Confidentiality, Integrity, and Availability might be affected if the vulnerability is exploited. Higher values usually signal greater potential damage.
The EPSS score estimates the probability that this vulnerability will be exploited in the near future.
EPSS Score: 0.399% (probability of exploit)
EPSS Percentile: 73.77%
(lower percentile = lower relative risk)
This vulnerability is less risky than approximately 26.230000000000004% of others.
Stay updated with real-time CVE vulnerabilities and take action to secure your systems. Enhance your cybersecurity posture with the latest threat intelligence and mitigation techniques. Develop the skills necessary to defend against CVEs and secure critical infrastructures. Join the top cybersecurity professionals safeguarding today's infrastructures.