CAPEC-447 Metadata
Likelihood of Attack
Medium
Typical Severity
High
Overview
Summary
An adversary modifies the design of a technology, product, or component to acheive a negative impact once the system is deployed. In this type of attack, the goal of the adversary is to modify the design of the system, prior to development starting, in such a way that the negative impact can be leveraged when the system is later deployed. Design alteration attacks differ from development alteration attacks in that design alteration attacks take place prior to development and which then may or may not be developed by the adverary. Design alteration attacks include modifying system designs to degrade system performance, cause unexpected states or errors, and general design changes that may lead to additional vulnerabilities. These attacks generally require insider access to modify design documents, but they may also be spoofed via web communications. The product is then developed and delivered to the user where the negative impact can be leveraged at a later time.
Prerequisites
Access to system design documentation prior to the development phase. This access is often obtained via insider access or by leveraging another attack pattern to gain permissions that the adversary wouldn't normally have. Ability to forge web communications to deliver modified design documentation.
Potential Solutions / Mitigations
Assess design documentation prior to development to ensure that they function as intended and without any malicious functionality. Ensure that design documentation is saved in a secure location and has proper access controls set in place to avoid unnecessary modification.
Related CAPECs
CAPEC ID | Description |
---|---|
CAPEC-438 | An attacker modifies a technology, product, or component during a stage in its manufacture for the purpose of carrying out an attack against some entity involved in the supply chain lifecycle. There are an almost limitless number of ways an attacker can modify a technology when they are involved in its manufacture, as the attacker has potential inroads to the software composition, hardware design and assembly, firmware, or basic design mechanics. Additionally, manufacturing of key components is often outsourced with the final product assembled by the primary manufacturer. The greatest risk, however, is deliberate manipulation of design specifications to produce malicious hardware or devices. There are billions of transistors in a single integrated circuit and studies have shown that fewer than 10 transistors are required to create malicious functionality. |
Stay Ahead of Attack Patterns
Understanding CAPEC patterns helps security professionals anticipate and thwart potential attacks. Leverage these insights to enhance threat modeling, strengthen your software development lifecycle, and train your security teams effectively.